• Title/Summary/Keyword: 나노결정립 합금

Search Result 14, Processing Time 0.029 seconds

Technology and Applications of Mechanical Alloying Processing (기계적 합금화 공정 기술 및 응용)

  • 이광민;김진천;이재성;김영립
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.89-96
    • /
    • 2004
  • 1980년대 후반부터 집중적으로 연구되어온 기계적 합금화 공정 기술은 이제 단순화합물 조성의 합금화공정 뿐 만아니라 기계화학적(Mechanochemical) 방법으로까지 진보되어 다양한 시스템으로의 응용기술로까지 발전하게 되었다 더욱이 최근 나노기술의 한고상 제조기술로서도 역할을 하게 되는 기계적 합금화 공정 기술은 21세기에 있어서도 본문에서 연급한 바와 같은 고온용 고장도 Al 합금제조 외에도 나노결정립 분말, 자성재료, 에너지전환/저장기능재료, 준결정상제어 분야로서의 무한한 응용 가능성을 기대해 볼 수 있다.

The Effects of Insulating Materials on the Magnetic Properties of Nanocrystalline FeCuNbSiB Alloy Powder Cores (FeCuNbSiB 나노결정립 합금 분말코아의 자기적 특성에 미치는 절연체의 영향)

  • Noh, T.H.;Choi, H.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.186-191
    • /
    • 2004
  • The variation of magnetic properties with insulating materials(glass frits, talc and polyamide) in compressed powder cores composed of Fe$\sub$73.5/Cu$_1$Nb$_3$Si$\sub$15.5/B$\sub$7/ nanocrystalline alloy powders(size: 250~850 $\mu\textrm{m}$) and 3 wt% insulators has been investigated. Larger permeability was obtained at the frequency lower than 300~400 kHz for the powder cores including ceramic insulators(glass frits and talc) as compared to the cores with polyamide, while at higher frequency than 1 MHz the permeability of the former cores decreased rapidly. Further the cores with ceramic insulators showed larger core loss and smaller peak quality factor attained at lower frequency. On the contrary, the powder cores with polyamide exhibited high stability of permeabilities up to several MHz and superior core-loss and quality-factor properties. Moreover the dc bias property was better in the wide field range for the cores having polyamide. The enhanced magnetic properties of polyamide-added cores were attributed to the more sufficient electrical insulation between magnetic particles, where the higher insulation state was considered to be obtained from the larger volume fraction of polyamide in the powder cores.

The Effects of Surface Insulation Layer on the Magnetic Properties of Nanocrystalline Alloy Ribbons (표면 절연층이 나노결정립 합금 리본의 자기적 특성에 미치는 영향)

  • Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.226-231
    • /
    • 2007
  • High frequency loss property of nanocrystalline amorphous ribbon with a high resistivity insulation layer of $TiO_2$ and $SiO_2$ was studied. The insulation layer was fabricated by sol-gel method using dip-coating. The optimum composition ratio of metal alkoxide and slurry for fabrication of insulation layer was established and insulation layer with high adhesion was coated on the nanocrystalline amorphous ribbon. Frequency loss of magnetic core material manufactured on nanocrystalline amorphous ribbon with the surface insulation layer decreased over 40 % compared with that of magnetic core material without surface insulation layer. The insertion loss of an inductive coupler, which was prepared by using magnetic core material coated insulation layer, decreased due to reduction of frequency loss for magnetic core material and insertion loss decreased in proportion to frequency.

The Effects of Co-substitution on the Magnetic Properties of Nanocrystalline Nd-Fe-B based Alloy Containing α-Fe as Main Phase (Co 치환이 α-Fe기 초미세결정립 Nd-Fe-B계 합금의 자기특성에 미치는 영향)

  • Cho, D.H.;Cho, Y.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.30-33
    • /
    • 2002
  • The Effects of Co-substitution in the nanocrystalline Nd-Fe-B-Mo-Cu alloys were investigated. $\alpha$-Fe based nanocrystalline Nd-Fe-B-Mo-Cu alloys were prepared by crystallization process of amorphous Nd-Fe-B-Mo-Cu alloy produced by rapid solidification process. The substitution of Co resulted in the decrease of grain size and improves the hard magnetic properties. The remanence, coercivity, and Curie temperature of nanocrystalline N $d_4$(F $e_{0.85}$ $Co_{0.15}$)$_{82}$ $B_{10}$M $o_3$Cu alloy showed more improved magnetic properties than those of Co-free alloy. The grain size was measured to be about 15 nm. The coercivity, remanence and maximum energy product were 239 kA/m, 1.41, and 103.5 kJ/ $m^3$, respectively, for the nanocrystalline N $d_4$(F $e_{0.85}$ $Co_{0.15}$)$_{82}$ $B_{10}$M $o_3$Cu alloy annealed for 0.6 ks at 640 $^{\circ}C$.

A Study on Broadband Inductive Coupler using Impregnated Nanocrystalline Ribbon (함침된 나노결정립 리본을 이용한 광대역 유도형 결합기 연구)

  • Kim, Hyun-Sik;Ju, Woo-Jin;Sohn, Kyung-Rak
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.599-605
    • /
    • 2019
  • Ferrite cores are used as a soft magnetic material in the fabrication of couplers for inductive powerline communication (PLC). However, it is difficult to adjust the size freely according to the power-line and power-grid environment. In this paper, we report that a nano-crystalline alloy with higher permeability than ferrite can be used as an inductive coupler for non-contact PLC. Since nano-crystalline are produced in the form of a thin ribbon, the size of the coupler can be freely controlled by the number of ribbons wound on the toroidal core. It was fabricated with induction type coupler and showed to be suitable for non-contact power line communication. Experimental results show that the communication bandwidth is 45 Mbps for 100 m and 8 Mbps for 200 m under the current fluctuation of less than 100 A, and the reception ratio is 100%.

Communication Performance of Inductive Coupler Using Nanocrystalline Alloy (나노결정립 합금을 이용한 유도형 결합기의 통신 성능)

  • Yang, Seung-Ho;Jeong, Jae-Hwan;Sohn, Kyung-Rak
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.154-154
    • /
    • 2018
  • Conventional inductive powerline communications typically use ferrite cores. However, since the recent nanocrystalline cores are expected to perform better, this paper aims to measure the performance of inductive couplers using nanocrystalline cores. To do this, we used inductive powerline communications to observe the communication range when increasing the number of cores from one to five. This experiment shows that we have the best communication performance when we connect 5 cores.

  • PDF

Design of an Inductive Coupler for Broadband Powerline Communication for Real-Time Monitoring of Distribution Automation System (배전자동화시스템의 실시간 감시를 위한 광대역 전력선통신용 유도성 커플러 설계)

  • Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1618-1623
    • /
    • 2019
  • In this paper, inductive couplers realizing broadband powerline communication (PLC) are fabricated using Fe-based nanocrystalline alloy and their performance is analyzed. As a result of the field tests using the distribution automation system (DAS), the couplers achieve comparatively excellent data communication in the principal frequency band of broadband PLC although there is a difference in communication rate depending on the presence or absence of a branch. In addition, it has been confirmed that the communication speed is maintained for a real-time transmission even in a high current environment although there is a difference in the transmission rate depending on the distance. Hence, it is considered that the inductive couplers can be used as a core device to realize the intelligent power network by exploiting them for the monitoring and remote controlling of the power plant equipments for the DAS located in the inaccessible areas.

Preparation of Nanocomposite Metal Powders in Metal-Carbon System by Mechanical Alloying Process (기계적 합금화 방법에 의한 금속-카본계에서의 나노복합금속분말의 제조)

  • Kim, Hyun-Seung;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.328-336
    • /
    • 1998
  • In metal-carbon system with no mutual solubility between matrix and alloying elements as solid or liquid phases, Cu-C-X nanocomposite metal powders were prepared by high energy ball milling for solid-lubricating bronze bearings. Elemental powder mixtures of Cu-lOwt.%C- 5wt. %Fe and Cu- lOwt. %C- 5wt. %Al were mechanically alloyed with an attritor in an argon atmosphere, and then microstructural evolution of the Cu-C-X nanocomposite metal powders was examined. It has been found that after 10 hours of MA, the approximately 10$\mu\textrm{m}$ sized Cu-C- X nanocomposite metal powders can be produced in both compositions. Morphological characteristics and microstructural evolution of the Cu-C-X powders have shown a similar MA procedure compared to those of metal-metal system. As a result of X - ray diffraction analysis, diffraction peaks of Cu and C were broaden and peak intensities were decreased as a function of MA time. Especially, the gradual disappearance of C peaks in the X- ray spectra is proved to be due to the lower atomic scattering factor of C. The calculated Cu crystallite sizes in Cu- C- X nanocomposite metal powders by Williamson- Hall equation were about lOnm size, on the other hand, the observed ones by TEM were in the range of 10 to 30nm.

  • PDF

Effects of Heat Treatment on Secondary Phase Formation and Nanoindentation Creep Behavior of Nanocrystalline CoCrFeMnNi High-entropy alloy (나노결정립 CoCrFeMnNi 고엔트로피합금의 열처리에 따른 이차상 형성 및 나노압입 크리프 거동 변화 연구)

  • Dong-Hyun Lee;Jae-il Jang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.128-136
    • /
    • 2023
  • In this study, the effects of heat treatment on the nano-scale creep behavior of CoCrFeMnNi high-entropy alloy (HEA) processed by high-pressure torsion (HPT) was investigated through nanoindentation technique. Nanoindentation experiments with a Berkovich indenter were performed on HPT-processed alloy subjected to heat treatment at 450℃, revealing that the hardness of the HPT-processed alloy (HPT sample) significantly increased with the heat treatment time. The heat treatment-induced microstructural change in HPT-processed alloy was analyzed using transmission electron microscopy, which showed the nano-sized Cr-, NiMn-, and FeCo-rich phases were formed in the HPT-processed alloy subjected to 10 hours of heat treatment (HPT+10A sample). To compare the creep behavior of HPT and HPT+10A samples, constant load nanoindentation creep experiments were performed using spherical indentation indenters with two different radii. It was revealed that the predominant mechanism for creep highly depended on the applied stress level. At low stress level, both HPT and HPT+10A samples were dominated by Coble creep. At high stress level, however, the mechanism transformed to dislocation creep for HPT sample, but continued to be Coble creep for HPT+10A sample, leading to higher creep resistance in the HPT+10A sample.