• Title/Summary/Keyword: 끝단 질량

Search Result 42, Processing Time 0.014 seconds

Sleeper Spacing Optimization for Vibration Reduction in Rails (철로의 진동제어를 위한 침목 간격 최적설계)

  • Batjargal, Sodbilig;Abe, Kazuhisa;Koro, Kazuhiro
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.569-577
    • /
    • 2012
  • In this study, a theoretical investigation of optimized sleeper spacing which can suppress resonances of a railway track is attempted. To achieve this, we introduced a minimization problem in which the objective function is given by the wave transmittance and the design variable is defined by sleeper distribution. In the analysis the rail is modeled by a Timoshenko beam and the sleeper is represented by a mass. The infinite track analysis is realized by attaching the transmitting boundaries at both ends of the finite optimization region. Through numerical analyses the sleeper spacing effective in reduction of the transmittance is discussed. Furthermore, the feasibility of the proposed method is validated in the aspect of vibration reduction through response analyses for a harmonic load.

SPH-Based Wave Tank Simulations (SPH 기법 기반의 파동수조 시뮬레이션)

  • Lee, Sangmin;Kim, Mujong;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • Recently, large-scale offshore and coastal structures have been constructed owing to the increasing interest in eco-friendly energy development. To achieve this, precise simulations of waves are necessary to ensure the safe operations of marine structures. Several experiments are required in the field to understand the offshore wave; however, in terms of scale, it is difficult to control variables, and the cost is significant. In this study, numerical waves under various wave conditions are produced using a piston-type wavemaker, and the produced wave profiles are verified by comparing with the results from a numerical wave tank (NWT) modeled using the smoothed particle hydrodynamics (SPH) method and theoretical equations. To minimize the effect by the reflected wave, a mass-weighted damping zone is set at the right end of the NWT, and therefore, stable and uniform waves are simulated. The waves are generated using the linear and Stokes wave theories, and it is observed that the numerical wave profiles calculated by the Stokes wave theory yield high accuracy. When the relative depth is smaller than two, the results show good agreement irrespective of the wave steepness. However, when the relative depth and wave steepness are larger than 2 and 0.04, respectively, the errors are negligible if the measurement position is close to the excitation plate. However, the error is 10% or larger if the measurement position is away from the excitation location. Applicable target wave ranges are confirmed through various case studies.