• Title/Summary/Keyword: 깊이인식

Search Result 430, Processing Time 0.03 seconds

A Comparison Study on Related Work for Improving the Performance of Hand Gesture Recognition on Kinect Devices (키넥트의 손동작인식성능 개선방안 관련연구 분석)

  • Park, So-Hyun;Park, Eun-Young;Park, Young-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.918-921
    • /
    • 2015
  • 최근, 기계와 사람이 상호작용을 하는 HCI(Human-Computer Interaction) 기술이 중요해지고 있다. 그 중에서도 연구가들 사이에서 신체의 골격을 인식하는 동작인식 카메라인 키넥트를 활용한 연구들이 급증하고 있다. 키넥트를 사람과 배경의 깊이를 인식 및 분석한 후 사람인지를 인지한다. 하지만 사람과 배경의 깊이 단계가 같을 경우 사람을 인식하기 힘들다는 한계점이 있다. 본 논문에서는, 이와 같은 한계점을 해결하기 위한 관련 논문을 비교, 분석하고자 한다.

A Study On Three-dimensional Face Recognition Model Using PCA : Comparative Studies and Analysis of Model Architectures (PCA를 이용한 3차원 얼굴인식 모델에 관한 연구 : 모델 구조 비교연구 및 해석)

  • Park, Chan-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1373-1374
    • /
    • 2015
  • 본 논문은 복잡한 비선형 모델링 방법인 다항식 기반 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 벡터공간에서 임의의 비선형 경계를 찾아 두 개의 집합을 분류하는 방법으로 주어진 조건하에서 수학적으로 최적의 해를 찾는 SVM(Support Vector Machine)를 사용하여 3차원 얼굴인식 모델을 설계하고 두 모델의 3차원 얼굴 인식률을 비교한다. 3D스캐너를 통해 3차원 얼굴형상을 획득하고 획득한 영상을 전처리 과정에서 포인트 클라우드 정합과 포즈보상을 수행한다. 포즈보상 통해 정면으로 재배치한 영상을 Multiple Point Signature기법을 이용하여 얼굴의 깊이 데이터를 추출한다. 추출된 깊이 데이터를 RBFNN과 SVM의 입력패턴과 출력으로 선정하여 모델을 설계한다. 각 모델의 효율적인 학습을 위해 PCA 알고리즘을 이용하여 고차원의 패턴을 축소하여 모델을 설계하고 인식 성능을 비교 및 확인한다.

  • PDF

Surface Curvature Based 3D Pace Image Recognition Using Depth Weighted Hausdorff Distance (표면 곡률을 이용하여 깊이 가중치 Hausdorff 거리를 적용한 3차원 얼굴 영상 인식)

  • Lee Yeung hak;Shim Jae chang
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.1
    • /
    • pp.34-45
    • /
    • 2005
  • In this paper, a novel implementation of a person verification system based on depth-weighted Hausdorff distance (DWHD) using the surface curvature of the face is proposed. The definition of Hausdorff distance is a measure of the correspondence of two point sets. The approach works by finding the nose tip that has a protrusion shape on the face. In feature recognition of 3D face image, one has to take into consideration the orientated frontal posture to normalize after extracting face area from original image. The binary images are extracted by using the threshold values for the curvature value of surface for the person which has differential depth and surface characteristic information. The proposed DWHD measure for comparing two pixel sets were used, because it is simple and robust. In the experimental results, the minimum curvature which has low pixel distribution achieves recognition rate of 98% among the proposed methods.

  • PDF

3D Face Recognition using Projection Vectors for the Area in Contour Lines (등고선 영역의 투영 벡터를 이용한 3차원 얼굴 인식)

  • 이영학;심재창;이태홍
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.230-239
    • /
    • 2003
  • This paper presents face recognition algorithm using projection vector reflecting local feature for the area in contour lines. The outline shape of a face has many difficulties to distinguish people because human has similar face shape. For 3 dimensional(3D) face images include depth information, we can extract different face shapes from the nose tip using some depth values for a face image. In this thesis deals with 3D face image, because the extraction of contour lines from 2 dimensional face images is hard work. After finding nose tip, we extract two areas in the contour lilies from some depth values from 3D face image which is obtained by 3D laser scanner. And we propose a method of projection vector to localize the characteristics of image and reduce the number of index data in database. Euclidean distance is used to compare of similarity between two images. Proposed algorithm can be made recognition rate of 94.3% for face shapes using depth information.

  • PDF

Implementation of Touch Screen using 3D Depth Information (3차원 깊이 정보를 이용한 터치 스크린 구현)

  • Kim, Ho-Seong;Jang, Won-Serk;Kwon, Soon-Kak
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1502-1505
    • /
    • 2013
  • 프레젠테이션을 위한 기존 방비들은 기능이 제한적이거나 또는 고비용이라는 문제점을 가지고 있다. 본 논문에서는 깊이 카메라를 이용한 손의 터치와 터치위치와 프레젠테이션 내용을 조합하여 프레젠테이션의 자유도를 높이는 방법을 제안한다. 제안 방법은 깊이 카메라로부터 스크린 영역의 깊이 값을 배경으로 설정하고, 배경과 차이나는 객체가 들어오면, 객체의 깊이 값과 배경의 깊이 값을 비교하면서 포인터를 추출한다. 모의실험 결과로부터 스크린의 상하좌우 중에 한곳에 카메라를 설치하고 프레젠테이션 페이지마다 서로 다른 위치에서 터치가 인식되고, 다양한 프레젠테이션 이벤트가 실행됨을 확인하였다.

A Study on 2D/3D image Conversion Method using Create Depth Map (2D/3D 변환을 위한 깊이정보 생성기법에 관한 연구)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1897-1903
    • /
    • 2011
  • This paper discusses a 2D/3D conversion of images using technologies like object extraction and depth-map creation. The general procedure for converting 2D images into a 3D image is extracting objects from 2D image, recognizing the distance of each points, generating the 3D image and correcting the image to generate with less noise. This paper proposes modified new methods creating a depth-map from 2D image and recognizing the distance of objects in it. Depth-map information which determines the distance of objects is the key data creating a 3D image from 2D images. To get more accurate depth-map data, noise filtering is applied to the optical flow. With the proposed method, better depth-map information is calculated and better 3D image is constructed.

Background subtract ion with comb mat ion of intensity and depth informal ion (밝기 정보와 깊이 정보를 결합한 배경 제거)

  • 서경민;이칠우
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.138-141
    • /
    • 2001
  • 영상을 전경과 배경으로 분리하는 작업은 영상을 의미 있고 관심의 대상인 전경 영역과 그렇지 않은 배경 영역으로 나눈다는 점에서 매우 유용한 작업이다. 기존의 제안된 방법으로는 intensity 기반, 깊이 기반 그리고 motion 기반 배경 제거 방법 등이 있다. 본 논문에서는 영상내의 intensity 정보와 깊이 정보를 함께 이용하여 영상 내의 배경을 제거하는 방법을 제안한다. 제안하는 방법은 영상 인식과 강시 시스템 등의 전처리로서 활용될 수 있다.

  • PDF

Extraction of Face Feature Information using Stereo Map (Stereo Map Matching을 통한 안면 특성 정보 추출)

  • 최태준;남궁재찬
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.179-182
    • /
    • 2003
  • 기존의 단일영상을 통한 얼굴인식기술이 갖는 단점을 극복하고자 본 논문에서는 스테레오 영상을 사용하여 단일영상의 제약조건 약화와 스테레오 영상의 깊이 정보를 이용한 보다 강건한 얼굴정보의 추출을 통한 다양한 특징 정보를 이용함으로써 얼굴인식의 인식률을 향상 시키고자 하였다.

  • PDF

Depth location extraction and three-dimensional image recognition by use of holographic information of an object (홀로그램 정보를 이용한 깊이위치 추출과 3차원 영상인식)

  • 김태근
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.51-57
    • /
    • 2003
  • The hologram of an object contains the information of the object's depth distribution as well as the depth location of the object. However these pieces of information are blended together as a form of fringe pattern. This makes it hard to extract the depth location of the object directly from the hologram. In this paper, I propose a numerical method which separates the depth location information from the single-sideband hologram by gaussian low-pass filtering. The depth location of the object is extracted by numerical analysis of the filtered hologram. The hologram at the object's depth location is recovered by the extracted depth location.

A Region Depth Estimation Algorithm using Motion Vector from Monocular Video Sequence (단안영상에서 움직임 벡터를 이용한 영역의 깊이추정)

  • 손정만;박영민;윤영우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.96-105
    • /
    • 2004
  • The recovering 3D image from 2D requires the depth information for each picture element. The manual creation of those 3D models is time consuming and expensive. The goal in this paper is to estimate the relative depth information of every region from single view image with camera translation. The paper is based on the fact that the motion of every point within image which taken from camera translation depends on the depth. Motion vector using full-search motion estimation is compensated for camera rotation and zooming. We have developed a framework that estimates the average frame depth by analyzing motion vector and then calculates relative depth of region to average frame depth. Simulation results show that the depth of region belongs to a near or far object is consistent accord with relative depth that man recognizes.

  • PDF