• Title/Summary/Keyword: 깊이영상 생성

Search Result 343, Processing Time 0.018 seconds

A Technique for Interpreting and Adjusting Depth Information of each Plane by Applying an Object Detection Algorithm to Multi-plane Light-field Image Converted from Hologram Image (Light-field 이미지로 변환된 다중 평면 홀로그램 영상에 대해 객체 검출 알고리즘을 적용한 평면별 객체의 깊이 정보 해석 및 조절 기법)

  • Young-Gyu Bae;Dong-Ha Shin;Seung-Yeol Lee
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.31-41
    • /
    • 2023
  • Directly converting the focal depth and image size of computer-generated-hologram (CGH), which is obtained by calculating the interference pattern of light from the 3D image, is known to be quite difficult because of the less similarity between the CGH and the original image. This paper proposes a method for separately converting the each of focal length of the given CGH, which is composed of multi-depth images. Firstly, the proposed technique converts the 3D image reproduced from the CGH into a Light-Field (LF) image composed of a set of 2D images observed from various angles, and the positions of the moving objects for each observed views are checked using an object detection algorithm YOLOv5 (You-Only-Look-Once-version-5). After that, by adjusting the positions of objects, the depth-transformed LF image and CGH are generated. Numerical simulations and experimental results show that the proposed technique can change the focal length within a range of about 3 cm without significant loss of the image quality when applied to the image which have original depth of 10 cm, with a spatial light modulator which has a pixel size of 3.6 ㎛ and a resolution of 3840⨯2160.

Preliminary Research on the Implementation of Information of Human Facial Part Required for the 3D Printing of Eye Shield (안구차폐체 제작에 필요한 안면부 3차원 정보 구현의 기초연구)

  • Choi, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.955-960
    • /
    • 2019
  • The Computed tomography (CT) scan can have high radiation in a few tests, and this risk is significant given that it is often repeated in one patient. In children, the incidence of radiation-induced cancer is reported because organs are growing, are more sensitive to radiation. 3D printing has recently been studied to be applied to various applications as a research field for 3D printing applications, research on fabrication of radiation shields and materials has been conducted. The purpose of the 3D printer is to replace the existing panel-type shields and to make customized designs according to the shape of the human body. Therefore, research on 3D information processing to be input to the 3D printer is also necessary. In this study, 3D data of the human body surface, which is the preliminary step of the manufacture of patient-specific eye shield using stereo vision depth map technology, was studied. This study aims to increase the possibility of three-dimensional output. As a result of experimenting with this method, which is relatively simple compared with other methods of 3D information processing, the minimum coordinates for 3D information are extracted. The results of this study provided the advantages and limitations of stereo images using natural light and will be the basic data for the manufacture of eye shields in the future.

Group-based Adaptive Rendering for 6DoF Immersive Video Streaming (6DoF 몰입형 비디오 스트리밍을 위한 그룹 분할 기반 적응적 렌더링 기법)

  • Lee, Soonbin;Jeong, Jong-Beom;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.216-227
    • /
    • 2022
  • The MPEG-I (Immersive) group is working on a standardization project for immersive video that provides 6 degrees of freedom (6DoF). The MPEG Immersion Video (MIV) standard technology is intended to provide limited 6DoF based on depth map-based image rendering (DIBR) technique. Many efficient coding methods have been suggested for MIV, but efficient transmission strategies have received little attention in MPEG-I. This paper proposes group-based adaptive rendering method for immersive video streaming. Each group can be transmitted independently using group-based encoding, enabling adaptive transmission depending on the user's viewport. In the rendering process, the proposed method derives weights of group for view synthesis and allocate high quality bitstream according to a given viewport. The proposed method is implemented through the Test Model for Immersive Video (TMIV) test model. The proposed method demonstrates 17.0% Bjontegaard-delta rate (BD-rate) savings on the peak signalto-noise ratio (PSNR) and 14.6% on the Immersive Video PSNR(IV-PSNR) in terms of various end-to-end evaluation metrics in the experiment.