• 제목/요약/키워드: 깊이영상

검색결과 1,240건 처리시간 0.029초

반복적인 격자 워핑 기법을 이용한 깊이 영상 초해상도 기술 (Iterative Deep Convolutional Grid Warping Network for Joint Depth Upsampling)

  • 양윤모;김동신;오병태
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.205-207
    • /
    • 2020
  • 본 논문에서는 딥러닝 기반의 깊이 영상 초해상도 기술에 대해서 제안한다. 기존 깊이 영상의 초해상도 기술은 고해상도의 컬러 영상과 저해상도 깊이 영상을 이용하여 화소 값을 개선시켜 고해상도의 깊이 영상을 예측하였다. 하지만 이라한 방법들은 단순히 화소 값을 증가 또는 혹은 감소시키는 방법으로 언더슈팅 또는 오버슈팅과 문제를 발생시켜 성능 향상을 제한한다. 제안하는 기법에서는 이러한 한계를 극복하기 위해 화소의 위치를 이동하여 영상을 복원하는 격자 워핑 방식을 반복적으로 적용하여 고해상도 깊이 영상을 예측하였다. 실험 결과, 제안한 방식이 기존 방법들에 비해 정량적, 시각적 품질을 개선시켰음을 확인하였다.

  • PDF

깊이정보를 이용한 템플릿 매칭 기반의 효율적인 얼굴 추적 알고리즘 (Template Matching-based Efficient Face Tracking Algorithm using Depth Information)

  • 김우열;서영호;김동욱
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 추계학술대회
    • /
    • pp.11-14
    • /
    • 2012
  • 본 논문에서는 키넥트 센서의 RGB영상과 깊이영상을 사용하여 얼굴을 검출하고, 검출 된 템플릿을 이용하여 얼굴을 추적하는 방법을 제안한다. 얼굴검출은 기본적으로 기존의 Adaboost 방법을 사용하나, 깊이정보와 피부색을 사용하여 탐색영역을 최대한 축소하여 수행시간 및 오검출율을 줄였다. 그리고 얼굴추적은 깊이정보를 이용하여 템플릿의 크기, 탐색영역을 조정하였다. 또한, RGB영상보다 조명변화에 강한 깊이영상을 이용하여 효율적인 템플릿 매칭을 하였다.

  • PDF

수렴형 양안식 카메라 배열에서 에피폴라 조건을 이용한 깊이 추출 방법 (Depth Extraction Using Epipolar Constraints in Convergent Stereo Camera Array)

  • 장우석;호요성
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 추계학술대회
    • /
    • pp.31-32
    • /
    • 2012
  • 본 논문에서는 수렴형 양안식 카메라 배열에서 효율적으로 깊이 지도를 생성하는 방법을 제안한다. 기존의 양안식 영상에서의 깊이 지도 추출 방법은 영상 정렬화 과정이 필수적이었다. 이는 평행형 배열에서는 효과가 있지만, 수렴형 배열에서는 영상을 왜곡시키는 문제를 발생시킨다. 본 논문에서 제안하는 방법은 영상 정렬화 과정을 생략하고, 에피폴라 조건에 따라서 직접적으로 깊이 값을 추출한다. 깊이 예측을 위한 Markov Random Field 에너지는 계층적 구조를 사용하여 복잡도를 낮춘 상수 공간 신뢰 확산 방식에 의해서 최적화한다. 이어서 좀 더 정확한 깊이 지도를 구하기 위해서 후처리 기술을 최종적으로 적용한다. 실험을 통해 본 논문에서 제안한 방법이 기존의 방법에 비해서 적은 제약으로 깊이 지도를 좀 더 안정적으로 추출할 수 있음을 보였다.

  • PDF

키넥트를 이용한 깊이 영상에서 보행자 탐지 (Detecting pedestrians from depth images using Kinect)

  • 조재현;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.40-42
    • /
    • 2019
  • 색상 영상과 이에 상응하는 깊이 영상으로 3차원 비디오를 만드는 방법은 최근 키넥트 깊이 카메라와 같이 저가임에도 불구하고 높은 성능을 보이는 카메라가 시중에 출시되면서 다양한 형태의 응용분야에 많이 사용되기 시작했다[1]. 본 연구는 TOF(Time Of Flight) 카메라와 RGB 카메라가 같이 있는 키넥트를 이용해서 깊이 영상에서 보행자를 탐지한다. 전처리 작업으로 배경 깊이 맵을 미리 저장하고, 깊이의 차이로 보행자 유무를 알아낸다. 보행자를 지속적으로 탐지하기 위해 CAMShift 알고리즘을 사용해 라벨링과 보행자 추적을 하며, 보행자의 진행 방향과 속도를 탐지하기 위해 Dense Optical Flow를 사용해 보행자의 벡터 정보를 저장한다. 보행자가 깊이 맵 밖으로 나가면 해당 보행자에 대한 탐지를 종료한다.

Attention Model 을 이용한 단안 영상 기반 깊이 추정 네트워크 (Single Image-based Depth Estimation Network using Attention Model)

  • 정근호;윤상민
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.14-17
    • /
    • 2020
  • 단안 영상에서의 깊이 추정은 주어진 시점에서 촬영된 2 차원 영상으로부터 객체까지의 3 차원 거리 정보를 추정하는 것이다. 최근 딥러닝 기반으로 단안 RGB 영상에서 깊이 정보 추정에 유용한 특징 맵을 추출하고 이를 이용해서 깊이를 추정하는 모델들이 기존 방법들의 성능을 넘어서면서 관련된 연구가 활발히 진행되고 있다. 또한 Attention Model 과 같이 특정 특징 맵의 채널 혹은 공간을 강조하여 전체적인 네트워크의 성능을 개선하는 연구가 소개되었다. 본 논문에서는 깊이 정보 추정을 위해 사용되는 특징 맵을 강조하기 위해서 Attention Model 을 추가한 AutoEncoder 기반의 깊이 추정 네트워크를 제안하고 적용 부분에 따른 네트워크의 깊이 정보 추정 성능을 평가 및 분석한다.

  • PDF

3차원 영상 재생을 위한 집적결상법에서 기본영상 재조합을 통한 재생영상의 깊이 변환 (Depth-Conversion in Integral Imaging Three-Dimensional Display by Means of Elemental Image Recombination)

  • 서장일;신승호
    • 한국광학회지
    • /
    • 제18권1호
    • /
    • pp.24-30
    • /
    • 2007
  • 3차원 영상 재생을 위한 집적결상법에서 기본영상의 재조합을 통한 재생영상의 깊이변환에 관하여 연구하였다. 렌즈 배열 또는 카메라 배열 등을 통하여 획득된 영상 배열을 적절한 조건 하에서 재조합하여 재생함으로써 재생영상의 깊이에 대해 도치(pseudoscopic) 영상 또는 정치(orthoscopic) 영상, 허상, 실상 뿐만 아니라 임의의 깊이로의 왜곡 없는 변환이 가능하다. 본 논문에서는 각 변환에 대한 재조합 조건을 이론적으로 유도하고 실험을 통하여 확인하였다.

키넥트를 이용한 색상 및 깊이 기반 영상 분할 기법

  • 김영배;장원동;김창수
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 추계학술대회
    • /
    • pp.106-107
    • /
    • 2015
  • 본 논문에서는 색상 및 깊이 기반 영상 분할 기법을 제안한다. 계층화된 영상 분할을 수행하기 위해서 색상을 기준으로 영상을 과분할 한 후, 과분할 영역의 깊이를 기준으로 영역 병합을 수행한다. 적은 개수의 화소로 이루어진 병합 영역을 제거하기 위해서 인접한 분할 영역 중 화소 수가 많은 영역에 병합시키는 이상영역 처리 기법을 수행한다. 제안하는 영상 분할 기법을 기존의 데이터셋 및 키넥트 취득 영상에 적용하여 신뢰도 높은 객체 단위 영상 분할이 이루어짐을 확인한다.

  • PDF

스테레오 영상 생성을 위한 적응적 깊이 할당 (An Adaptive depth assignment for generating stereo images)

  • 김혜문;박동권;원치선
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 하계학술대회
    • /
    • pp.31-34
    • /
    • 2011
  • 본 논문에서는 2D-3D 변환 후, 입체감 수정에 관련한 피드백 시스템과 그에 맞게 적용되는 적응적 관계식을 제안한다. 2D-3D 변환을 통해 우선 깊이 영상을 생성하고 이를 이용하여 깊이 영상 기반 렌더링(DIBR)을 통해 수평방향의 이동을 계산하여 좌영상과 우영상을 생성한다. 그러나 깊이 정보 기반 렌더링 후 사용자 선호에 따라 입체감을 수정할 필요가 있을 때 깊이 영상을 재생성 해야 하는 문제점이 발생하며 이를 극복하고자 피드백 시스템을 통한 두 개의 조절 파라메터를 소개 한다. 즉, 'Pull-in'혹은 'Push-away'의 입체감을 조절 할 수 있는 시차 이동식을 제안한다.

  • PDF

수직 리그를 이용한 임의시점 디지털 홀로그래픽 생성 시스템 구현 (System Implementation for Generating Virtual View Digital Holographic using Vertical Rig)

  • 구자명;이윤혁;서영호;김동욱
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 추계학술대회
    • /
    • pp.46-49
    • /
    • 2012
  • 본 논문에서는 3차원 입체 비디오처리 기술의 최종목표인 디지털 홀로그램을 생성하는데 필요한 객체의 좌표와 색상정보가 들어있는 같은 시점과 해상도인 RGB 영상과 깊이 영상을 획득하여 가상 시점의 디지털 홀로그램을 생성하는 시스템을 제안한다. 먼저, 가시광선과 적외선의 파장을 이용하여 파장에 따라 투과율이 달라지는 콜드 미러를 사용하여 각각의 시점이 같은 다시점 RGB와 깊이 영상을 얻는다. 카메라 시스템이 갖는 다양한 렌즈 왜곡을 없애기 위한 보정 과정을 거친 후에 해상도가 서로 틀린 RGB 영상과 깊이 영상의 해상도를 같게 조절한다. 그 다음, DIBR(Depth Image Based Rendering) 알고리즘을 이용하여 원하는 가상 시점의 깊이 정보와 RGB 영상을 생성한다. 그리고 깊이 정보를 이용하여 디지털 홀로그램으로 구현할 객체만을 추출한다. 마지막으로 컴퓨터 생성 홀로그램 (computer-generated hologram, CGH) 알고리즘을 이용하여 추출한 가상 시점의 객체를 디지털 홀로그램으로 변환한다.

  • PDF

깊이 카메라 영상에서의 3D 특징점 기반 얼굴영역 추출 (3D Feature Point Based Face Segmentation in Depth Camera Images)

  • 홍주연;박지영;김명희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.454-455
    • /
    • 2012
  • 깊이 카메라에서 입력 받은 사용자의 얼굴 데이터에 morphable 모델을 fitting하여 실제 얼굴과 가까운 3D 얼굴 모델을 생성하기 위해서는 먼저 깊이 영상으로부터의 정확한 얼굴 영역 추출이 필요하다. 이를 위해 얼굴의 특징점을 기반으로 얼굴 영역 추출을 시도한다. 먼저 원본 깊이 영상을 보정하고, 컬러 영상으로부터 얼굴과 눈, 코의 영역을 탐색한 후 이를 깊이 영상에 대응시켜 눈, 코, 턱의 3차원 위치를 계산한다. 이렇게 결정된 얼굴의 주요 특징점들을 시작으로 영역을 확장함으로써 영상의 배경으로부터 얼굴 영역을 분리한다.