• 제목/요약/키워드: 깁스 표본자

검색결과 2건 처리시간 0.014초

경시적 자료의 계층적 베이즈 분석

  • 김달호;신임희
    • Communications for Statistical Applications and Methods
    • /
    • 제5권2호
    • /
    • pp.431-437
    • /
    • 1998
  • 본 논문의 목적은 계층적 베이즈 일반화 선형모형을 이용하여 경시적 자료를 분석하는 것이다. 구체적으로 계층적 베이즈 변량효과 모형을 소개하고 무정보적 사전분포 하에서 사후분포가 진(proper)인지에 대한 충분조건을 찾는다 또한, 깁스(Gibbs) 표본자를 사용하여 제안된 계층적 베이즈 절차의 수행에 관해 논의한다. 현실자료를 사용하여 제안된 계층적 베이즈 분석을 예시하고, 이에 대응하는 경험적 베이즈 분석과 비교한다.

  • PDF

비대칭 지수멱 오차를 가지는 자기회귀모형에서의 베이지안 추론 (Bayesian Inference for Autoregressive Models with Skewed Exponential Power Errors)

  • 류현남;김달호
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.1039-1047
    • /
    • 2014
  • 시계열 자료를 위한 가장 기본적인 모형인 자기회귀모형을 고려한다. 흔히 시계열 자료에서 정규성 가정이 위배되는 경우가 발생하며, 정규성 가정을 완화하기 위한 방법으로 두꺼운 꼬리를 가지는 분포 또는 비대칭 분포를 고려할 수 있다. 비대칭 지수멱 분포의 사용은 비뚤림이 있는 두꺼운 꼬리를 가지는 자기회귀모형의 이상치의 영향을 줄이고 로버스트한 추론을 할 수 있도록 한다. 본 논문에서는 자기회귀모형에 대한 오차항에 정규분포 보다 첨도와 왜도에 유연함을 가지는 분포를 고려함으로써 정규성 가정을 완화하여 추론하고자 하였다. 정규분포의 대안으로 비대칭 지수멱 분포를 고려하였으며 정규분포의 결과와 비교 하여 비대칭 지수멱 분포의 로버스트함을 보였다. 또한 주어진 분포에 대한 효율적인 베이지안 추론을 하기 위하여 SIR 알고리즘과 격자망 방법을 고려하였다.