• Title/Summary/Keyword: 김태수

Search Result 643, Processing Time 0.027 seconds

Development of the Filterable Water Sampler System for eDNA Filtering and Performance Evaluation of the System through eDNA Monitoring at Catchment Conduit Intake-Reservoir (eDNA 포집용 채수 필터시스템 개발과 집수매거 취수지 내에서의 성능평가)

  • Kwak, Tae-Soo;Kim, Won-Seok;Lee, Sun Ho;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.272-279
    • /
    • 2021
  • A pump-type eDNA filtering system that can control voltage and hydraulic pressure respectively has been developed, and applied a filter case that can filter out without damaging the filter. The filtering performance of the developed system was evaluated by comparing the eDNA concentration with the conventional vacuum-pressured filtering method at the catchment conduit intake reservoir. The developed system was divided into a voltage control (manual pump system) method and a pressure control (automatic pump system) method, and the pressure was measured during filtering and the pressure change of each system was compared. The voltage control method started with 65 [KPa] at the beginning of the filtering, and as the filtering time elapsed, the amount of filtrate accumulated in the filter increased, so the pressure gradually increased. As a result of controlling the pressure control method to maintain a constant pressure according to the designed algorithm, there was a difference in the width of the hydraulic pressure fluctuation during the filtering process according to the feedback time of the hydraulic pressure sensor, and it was confirmed that the pressure was converged to the target pressure. The filtering performance of the developed system was confirmed by measuring the eDNA concentration and comparing the voltage control method and the hydraulic control method with the control group. The voltage control method obtained similar results to the control group, but the hydraulic control method showed lower results than the control group. It is considered that the low eDNA concentration in the hydraulic control method is due to the large pressure deviation during filtering and maintaining a constant pressure during the filtering process. Therefore, rather than maintaining a constant pressure during filtering, it was confirmed that a voltage control method in which the pressure is gradually increased as the filtrate increases with the lapse of filtering time is suitable for collecting eDNA. As a result of comparing the average concentration of eDNA in lentic zone and lotic zone as a control group, it was found to be 96.2 [ng µL-1] and 88.4 [ng µL-1l], respectively. The result of comparing the average concentration of eDNA by the pump method was also high in the lentic zone sample as 90.7 [ng µL-1] and 74.8 [ng µL-1] in the lentic zone and the lotic zone, respectively. The high eDNA concentration in the lentic zone is thought to be due to the influence of microorganisms including the remaining eDNA.

Studies on the Cold Resistance of The tea Plant in Korea -Especially on Leaf form and Cold resistance (한국산다수(韓國産茶樹)의 내한성(耐寒性)에 관(關)한 연구(研究) -특(特)히 지역별(地域別) 엽형태(葉形態)와 내한성(耐寒性)을 중심(中心)으로)

  • Kim, Jai Saing;Kim, Chang Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.53 no.1
    • /
    • pp.37-43
    • /
    • 1981
  • This study was aimed at expanding the tea plant culture in Korea to further north, and the leaf-form and the cold resistance of the tea plants selected form 7 districts(around Korea) were investigated. 1. The length of tea leaf is 5.1cm to 8.4cm, the width of the leaf is 2.3cm to 3.6cm, but the area of tea leaf in Mt. Mudung is $26.88cm^2$ and that is the widest of all. 2. The tooth number of the tea leaf in 43 to 73 but the number of Mt. Borim is remarkably number of all. The tooth number is increased or decreased in proportion to the leaf width and to the leaf length. 3. The lateral vein number is generally 13 to 19. The vein number of Mt. Borim is especially number of all. That is also increased or decreased in proportion to the leaf width and to the leaf length. 4. In general, the number of leaf formation index is 2 to 3, and ablong. 5. In general, those which come upper lands are remarkably small in length and width of the tea leaf and those which come from level lands are large. 6. All kinds of tea plant which is growing in Korea, area, are the same as those imported from China : Thea sinensis Linne var. Bohea. 7. I supposed that the external form of tea plant has a little changed by geography or climate for many a long day, since the tea plant had been transplanted in Mt. Samsin. 8. In the treatment of low temperature and duration of vernalization of their plants, those selected from Mt. Mudung and Mt. Hwaun were the coldest resistance, those from Mt. Samsin and Mt. Borim were medium and those from Mt. Joge and Nursery were cold sensitive. 9. The critical temperature of the tea plant from Mt. Mudung, Mt, Hwaum, Mt, Samsin and Mt. Borim was about $-10^{\circ}C$, and that from Mt. Joga and Nursery was about $-5^{\circ}C$. The critical temperature of frost injury of all tea plants in this experiments was $-15^{\circ}C$. 10. In spite of increasing the vernalization time, the critical temperature was not effected, but the treatments over critical temperature were increased their frost injuries. Based on these results, the coldest resistance, Mt. Mudung tea plant, was considered expanding their culture to further north improvement yields of the tea plants in Korea.

  • PDF

Cultural Practices of In vitro Tuber of Pinellia ternata(Thunb.) Breit I. Effects of Planting Time on Growth, Tuber Formation and Yield (기내(器內) 대량(大量) 생산(生産) 반하(半夏) 종구(種球)의 포장(圃場) 재배기술(裁培技術) 연구(硏究) I. 파종시기(播種詩期)가 생육(生育)과 괴경형성(塊莖形成) 및 수량(收量)에 미치는 영향(影響))

  • Park, Ho-Ki;Kim, Tai-Soo;Park, Moon-Soo;Choi, In-Leok;Jang, Yeong-Sun;Park, Keun-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.1 no.2
    • /
    • pp.109-114
    • /
    • 1993
  • This study was carried out to determine the optimum planting time for in vitromultiplied tuber of Pinellia ternata(Thunb.) Breit. The tubers were planted on April 20, May 20, June 20, July 20, August 20 and September 20 in 1990. Emergence ratios were 68 to 87% in any planting time except planting on July 20. The number of tubers per $m^2$ at harvest in plantings on May 20 and June 20 were significantly higher with 1,110 and 1,021, respectively, while in plantings after July 20, those were drastically decreased. As compared with fresh yield of planting on April 20(352kg /10a), that of May 20 was 109% and June 20 was 103%, while those of after July 20 were from 41% to 19%. There was a highly positive correlation between dry tuber yield and the number of tubers per $m^2(r=0.991^{**})$. Tuber yields for commercial use(diameter over 7.1mm) were high in planting on May 20(322kg /10a) and on June 20(299kg /10a). It was suggested that optimum field planting time for in vitro multiplied tuber of Pinellia ternata(Thunb.) Breit was from May 20 to June May 20.

  • PDF