Journal of the Korean Society for Nondestructive Testing
/
v.14
no.3
/
pp.185-193
/
1994
Conventional ultrasonic flaw detection system uses a large amplitude narrow pulse to excite a transducer. However, these systems are limited in pulse energy. An excessively large amplitude causes a dielectric breakage of the transducer, and an excessively long pulse causes decrease of the resolution. Using the pulse compression, a long pulse of pseudorandom signal can be used without sacrificing resolution by signal correlation. In the present work, the pulse compression technique was implemented into an ultrasonic system. Golay code was used as a pseudorandom signal in this system, since pair sum of autocorrelations has no sidelobe. The equivalent input pulse of the Golay code was derived to analyze the pulse compression system. Throughout the experiment, the pulse compression technique has demonstrated for its improved SNR(signal to noise ratio) by reducing the system's white noise. And the experimental data also indicated that the SNR enhancement was propotional to the square root of the code length used. The technique seems to perform particularly well with highly energy-absorbent materials such as polymers, plastics and rubbers.
본 논문은 효과적인 능동 풀-다운 기능을 위한 새로운 구조의 펄스 파워 모듈레이터를 제안한다. 제안된 능동 풀-다운 방식은 별도의 풀-다운 저항을 사용하지 않고, 펄스 방전 패스에 추가된 다이오드의 역회복 특성을 이용하여 풀-다운 기능을 수행한다. 본 논문에서 사용된 풀-다운 다이오드는 펄스 출력 시에는 정방향 바이어스 상태를 유지하다가, 펄스 출력이 제거되면 비교적 긴 역회복 구간동안 부하의 커패시턴스 성분에 남아있는 에너지가 방전될 수 있는 전류 패스를 제공한다. 이에 따라 제안된 구조의 펄스 모듈레이터는 기존에 제안된 풀-다운 회로에서 발생하는 발열 손실 또는 별도의 복잡한 제어회로와 같은 복잡한 구조의 문제를 보완하고 빠른 펄스 하강시간을 달성할 수 있다. 본 논문에서는 시뮬레이션을 통해 기존에 제안되었던 풀-다운 저항 방식과 풀-다운 스위치 방식, 제안하는 방식을 비교하여 제안된 구조의 성능과 우수성을 분석하였다.
A Kerr cell was utilized as an optical shutter to generate a shortened pulse and as an isolator between amplifiers in an iodine laser system. By rotating the polarization of incident laser pulse only during the timing window of high voltage applied to the Kerr cell, shortened pulses of 5 ns and 1 ns, corresponding to the difference in propagation time of two coaxial cables, were obtained. It was also noticed that more than one timing window of Kerr cell was produced with a long incident laser pulse from the oscillator. The measured transmittance of Kerr cell with respect to applied voltage was compared with the theoretical estimation using the electro-optic Kerr effect theory. Through the amplification of the shortened pulse in iodine amplifiers. a pulse of 0.5 GW(2 J in 4 ns) was obtained. ained.
펄스형 Nd:YAG 레이저는 연속형에 비해 효율이 높고 높은 첨두 출력(peak power)이 가능하므로 가공에 있어서 여러 가지 장점이 있다. 더구나 레이저 펄스 모양을 가변시키는 기능은 펄스형 Nd:YAG 레이저로 가공하기 힘든 특수분야에까지 가공을 가능하게 하였다. 본 연구에서는 3개의 플래쉬램프를 순차 점등시키는 MD(multi-discharge)방식의 레이저 시스템을 설계 및 제작하여, 램프 점등 시간의 변화에 따른 레이저 빔의 펄스폭과 펄스 세기(펄스 크기)를 조사하였다. 즉, PIC One-Chip microprocessor를 이용하여 실시간으로 3개의 플래쉬램프를 순차적으로 점등시켜 보다 다양한 펄스 모양을 만드는 기술을 개발하였다. 위 방식의 장점은 램프의 점등 지연시간을 0 $\sim$ 10ms 까지 다양하게 변화시킬 수 있고, 외부의 키보드로 실시간 제어가 가능하므로 보다 편리하게 펄스 모양을 변화시킬 수 있다. 또한 긴 펄스를 만들 수 있어 산업용 가공이나 의료용으로 널리 사용될 수 있을 것이다.
Recently, long pulses are transmitted for target detection in active sonar application. Matched filtering implemented by simple convolution algorithm, requires massive computational power for long replica. The computational loads are reduced significantly by implementing the convolution in the frequency domain with overlap add method, but the performance degrades for specified input/output system delay which constrains the size of FFT function. For performance improvement, the replica could be partitioned into uniform blocks (FDL) by re-using IFFT operations, or variable blocks of increasing length (MC) by using the largest possible blocks to calculate the convolution. In this paper, by combining the strong points of the two methods, we propose a new filter partition structure that allows for further optimization of the previous two methods.
Proceedings of the Optical Society of Korea Conference
/
2000.08a
/
pp.106-107
/
2000
현재 많이 사용되고 있는 펨토초 레이저는 일반적으로 수 nJ의 펄스 에너지를 가지고 반복률 100MHz의 수백 kW의 첨두 출력을 가지고 있다. 이러한 레이저에서는 짧은 레이저 펄스폭에 높은 첨두 세기를 가지고 있음에도 불구하고 높은 반복률을 가지기 때문에 평균 출력이 높다는 단점을 가지고 있다. 이를 해결하기 위해 공진기 덤핑을$^{(1-2)}$ 사용할 수 있지만 이 또한 복잡한 기술을 요하기 때문에 별 도움이 되지 못한다. 그래서 레이저 공진기로부터 직접 낮은 반복률과 높은 첨두 출력의 빔을 얻기위해 공진기의 길이를 길게하는 방법을 사용하게 되었다$^{(3)}$ . (중략)
Son, Y.G.;Oh, J.S.;Jang, S.D.;Cho, M.H.;NamKang, W.
Proceedings of the KIEE Conference
/
2002.07c
/
pp.1840-1842
/
2002
고전압 대 전류를 필요로 하는 펄스 파워 시스템에서 스위치는 중요한 소자중의 하나이다. 펄스 트랜스포머를 이용하여 고전압 펄스를 만드는 회로에서 대전류 스위칭에는 대부분 스파크 갭 스위치나 싸이라트론을 사용하는데 높은 펄스 반복 율과 긴 수명을 제공하기 위해서는 반도체 스위치를 사용해야한다. 고전압 대전류 펄스파워 시스템에 적합한 반도체 스위치의 스위칭 특성과 제어방식에 관한 연구를 수행하였다 실험에 사용한 스위치는 20 kV, 12.6 kA, 12 ${\mu}s$의 펄스 스위칭이 가능한 ABB사의 반도체스위치 스택 (5SPR-26L4508-8-WC)이다. 실험회로는 콘덴서에 충전을 완료한 다음 스위치와 인덕터를 통하여 방전하도록 구성하였다. 8개의 직렬 연결된 스위치는 광케이블을 사용하여 병렬구동하고, 고주파 스위칭 전류전원을 사용하여 고전압 절연을 하면서 게이트 구동전력을 전달하도록 하였다. 본 논문에서는 스위치 전압과 방전전류를 관측하여 반도체 스위치의 특성을 조사하였다.
he photoconductive gain mechanism in amorphus silicon devices was investigated in connection with applications to radiation detection. Various device types such as p-i-n, n-i-n and i-i-p-i-n structures were fabricated and tested. Photoconductive gain was measured in two time scales : one for short pulses of visible light(<$1{\mu}sec$) which simulate the transit of energetic charged particles or ${\gamma}$-rays, and the other for rather long pulses of light(1msec) which simulate x-ray exposure in medical imaging, We used two definitions of phtoconductive gain : current gain and charge gain which is an integration of the current gain. We obtained typical charge gains of 3~9 for short pulses and a few hundreds for long pulses at a dark current density level of 10mA/$cm^2$. Various gain results are discussed in terms of the device structure, applied bias and dark current density.
In this study, a solid-state laser system adopting a new real time multi-discharge (RTMD) method in which three flashlamps are turned on consecutively was designed and fabricated to examine the pulse width and the pulse shape of the laser beams depending upon the changes in the lamp rum-on time. That is, this study shows a technology that makes it possible to make various pulse shapes by turning on three flashlamps consecutively on a real-time basis with the aid of a PIC one-chip microprocessor. With this technique, the lamp turn-on delay time can be varied more diversely from 0 to 10 ms and the real-time control is possible with an external keyboard, enabling various pulse shapes. In addition, longer pulses can be more widely used for industrial processing and lots of medical purposes
Proceedings of the Korean Vacuum Society Conference
/
2012.08a
/
pp.273-273
/
2012
컷오프 진단법은 두 개의 탐침 형태로 제작된 마이크로 웨이브 진단법으로, 간단한 수식을 통해 전자밀도, 전자온도 등을 측정할 수 있다. 컷오프 탐침은 방사 안테나, 측정 안테나와 네트워크 분석기로 구성되어 있다. 네트워크 분석기는 두 안테나 사이의 플라즈마 투과 스펙트럼을 만드는데 쓰이며, 스펙트럼 분석을 통해 플라즈마 변수들을 측정할 수 있다. 이 진단법은 장치나 분석방법이 매우 간단한 장점을 지니며, 약 1 mW 정도의 적은 파워를 사용하여 플라즈마 상태를 거의 변화시키지 않는 측정이 가능하다. 또한 CF4와 같은 공정 가스를 이용한 플라즈마에서도 사용이 가능하다. 그러나 컷오프 진단법을 사용한 측정은 다른 종류의 진단법과 마찬가지로, 약 1초 정도의 긴 시간을 필요로 하는 단점이 있어, 펄스 플라즈마나 토카막과 같이 빠르게 변하는 플라즈마를 측정하기에는 무리가 있다. 최근에 개발된 푸리에 컷오프 탐침(Fourier Cutoff Probe, FCP)는 기존의 컷오프 탐침의 느린 시간분해능을 개선하기 위해 개발되었다. [1] 펄스 형태의 단일신호를 플라즈마를 투과하기 전후로 비교하면 투과 스펙트럼 및 플라즈마 변수들을 얻을 수 있으며, 기존 연구에서 구한 시간 분해능은 약 15 나노초였다. 이 값은 펄스 발생장치의 스펙에 따라 변하게 된다. 펄스폭이 짧을수록 시간분해능이 좋아지지만, 무한정 좋아질 수는 없다. 이 논문에서는 FCP 측정의 시간 분해능을 이론적으로 구하고, 시간 분해능의 이론적 한계를 구했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.