• Title/Summary/Keyword: 긴관통자

Search Result 12, Processing Time 0.02 seconds

A Study on High Velocity Impact Phenomena by a Long Rod Penetrator (긴 관통자에 의한 고속충돌현상 연구)

  • 이창현;최준홍;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.573-583
    • /
    • 1994
  • In this study, the shock characteristics for high velocity impact phenomena during the initial shock state by the long rod penetrator are calculated. From these results we re-analyze the one-dimensional hydrodynamic penetration theory by introducing the effective area ratio calculated from the mushroomed strain which is dependent on impact velocity. Calculated penetration depth and mushroomed strain show good agreement with high velocity impact experimental data. In addition we visualize the shock wave propagation in a transparent acryle block.

On the Penetration Phenomena for Thin and Multi-Layered Finite Thickness Plates by a Long Rod Penetrator (긴 관통자에 의한 유한박판 및 적층표적재의 관통현상 연구)

  • 이창현;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1759-1772
    • /
    • 1994
  • In this study, we re-examined the Tate's modified Bernoulli equation to study penetration phenomena for long rod projectile into single or multi-layered finite thickness plates. We used the force equlibrium equation at mushroomed nose/target interface instead of conventional pressure equation at the stagnation point. In our penetration model, we considered the velocity dependent $R_t$ value for semi-infinite target and considered only the back face effect for finite target. To compensate for $R_t$ value according to target's thickness and back face effect, we used the spherical cavity expansion theory for semi-infinite plate and used the cylindrical cavity expansion theory for finite plate. Also we developed the experimental technique using make screen to measure the penetration duration time at each layered plate. In 3-layered laminated RHA/mild steel/ A1 7039 plate, we observed that spall had occured around the back face of A1 7039 plate by the stress wave interaction. Through the comparison between theoretical and experimental data including Lambert's results, we conform that our study has good confidences.

Oblique Impact Analysis of Long Rod Penetrator against Metallic Plate using NET3D (NET3D를 이용한 긴 관통자와 금속 판재의 경사충돌 해석)

  • 유요한
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.228-238
    • /
    • 2002
  • Using the dynamic explicit program NET3D, oblique impact between long rod penetrator and metallic plate was analyzed. Compared with an experiment and AUTODYN-3D analysis result, the accuracy of NET3D program was examined. It was proved that NET3D program could analyze comparatively exactly oblique impact phenomenon between long rod penetrator and metallic plate. The final deformed configuration of penetrator predicted by NET3D program was more close to experimental result than commercial program AUTODYN-3D. But, in order to increase the reliability of NET3D program in the simulation of tensile fracture phenomenon, the additional research is required.

High Speed Impact and Penetration Analysis using Explicit Finite Element Method (외연 유한요소 기법을 사용한 고속충돌 및 관통해석)

  • Paik, Seung-Hoon;Kim, Seung-Jo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.5-13
    • /
    • 2005
  • The impact of a long-rod penetrator into oblique plates with combined obliquity and yaw is investigated. The study was done using a newly developed three dimensional dynamic and impact analysis code, which uses the explicit finite element method. Through the comparison of simulation result with experimental result and other code's result, the adaptability and accuracy of the developed code is evaluated under the complex situation in which yaw angle and oblique angle exist simultaneously. As a result of comparison, it has found that deformed shape, residual length and velocity, rotational velocity of long-rod show good agreement with experimental data. Through this study, the applicability and accuracy of the code as a metallic armour system design tool is verified.

Numerical Simulation of High-Velocity Oblique Impacts of Yawed Long Rod Projectile Against Thin-Plate (Yaw 를 가진 긴 관통자와 경사판재의 고속충돌 수치해석)

  • Yoo, Yo-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1426-1437
    • /
    • 2002
  • Using the Lagrangian explicit time-integration finite element code NET3D which can treat three-dimensional high-velocity impact problems, oblique penetration processes of long rod projectile with yaw against thin plate are simulated. Through the comparison of simulation result with experimental result and other code's computational result, the adaptability and accuracy of NET3D is evaluated under the complex situation in which yaw angle and oblique angle exist simultaneously. Main research contents to be handled in this paper include the followings. First, the accuracy and efficiency estimation of NET3D code result obtained from the oblique penetration simulations of long rod projectile with yaw against thin plate. Second, the effect of increasing impact velocity. Third, the effect of initial yaw for the spaced-plate target. Residual velocities, residual lengths, angular velocities, and final deformed configurations obtained from the NET3D computations are compared with the experimental results and other code's computational results such as Eulerian code MESA and Lagrangian code EPIC. As a result of comparisons, it has been found that NET3D code is superior to EPIC code and MESA code in the prediction capability of residual velocity and residual length of penetrator. The key features obtained from the experiment can be successfully reproduced through NET3D simulations. Throughout the study, the applicability and accuracy of NET3D as a metallic armor system design tool is verified.

A study on the effect of yield stress in long-rod penetration (긴 관통자 관통에서 항복 응력의 영향에 대한 연구)

  • Hwang, Chan;Chung, Dong-Teak;Lee, Heon-Joo;Oh, Soo-Ik
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.248-253
    • /
    • 2000
  • This paper presents parametric study of long-rod penetration. Influences of yield stress of penetrator and target material on the penetration results such as crater size and penetrator residual length are contemplated. Numerical experiments are carried out with varying the value of static yield stress of materials. Lagrangian explicit code NET2D was used to perform parametric study. Element eroding algorithm was used to properly simulate long-rod penetration. Analytic and empirical model of long-rod penetration and Taylor test are used to explain the relationships of parameter and simulation results.

  • PDF

Analyses on Sunshine Influence of Road using GIS (GIS를 이용한 도로의 일조영향 분석)

  • Lee, Hyung-Seok;Kim, Jung-Sik;Park, Joon-Kyu
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.419-425
    • /
    • 2005
  • 산악지역을 관통하는 도로의 경우 그 특성상 절토 후 도로를 시공하는 경우가 자주 있으며 때로는 매우 긴 구간에 일조가 적게 나타나 음영이 오래 지속되는 곳이 발생한다. 본 연구는 GIS를 이용하여 도로의 노선계획시 예상되는 일조영향을 평가하여 정확한 데이터를 제공하고자 한다. 실험대상지역을 선정하고 수치지형자료의 변환을 통하여 3D 지형 메쉬데이터를 작성하고 동일좌표체계의 도로선형자료를 반영하여 정확한 도로모델링을 생성하므로써 도로의 각 지점별 일조영향분석을 위한 기초자료를 구축하였다. 또한 도로노면상의 음영시간을 계산하고 일영이 도로 전체에 어느 정도 유지되는지를 가시적으로 모델링화하여 계절별 시간대별로 도식화하므로써 판단자의 시각적 분석을 가능케 하였다.

  • PDF

서울 남부순환 도로, 관악터널 설계

  • 지왕률;박성록;황기수;정해성;이철수
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2002.03a
    • /
    • pp.19-26
    • /
    • 2002
  • 서울시에 건설될 새로운 내부 남부순한 도로는 제2 성산대교와 서쪽의 주요 고속화 도로를 연결하는 초고속 도로망을 구축할 것이다. 노선연장은 지하구조물 10.4km를 포함하여 총 34.8km에 달한다. 도로망이 완성되면 수도 서울 중심가의 심한 교통체증은 상당부분 완화 될 것이다. 공사비 7000억원에 이르는 대규모의 서울 남부순환 도로는 3차선 병렬터널 3개 공구를 포함하는 것으로 계획되어졌다. 이들 터널은 3차선, 일방향, 병렬터널로서 계곡부를 관통하며 굴착공법은 대부분 발파공법으로 계획되어져 있다. 가장 긴 관악터널은 지질조건이 복잡하며 따라서, 이런 지반에 적용성이 좋은 발파공법에 의한 굴착으로 계획되어졌다. 특히, 갱구부는 지질상태가 매우 불량하여 풍화암 자연상태로 설계하는 것이 불가능하였다. 설계자들은 터널 화재와 교통사고 등과 같은 터널내에서의 긴급상황에 대한 최적의 대책 수립에 중점을 두어야만 했다. 관악 터널 상부에 위치한 수로관을 통과하는 방법을 찾는 것이 당면 최대 관건이었다. 또한, 갱구부 주변지역의 환경을 보존하고 현장의 자연적인 아름다움 을 유지하기 위하여 굴착량을 최소화하는 공법선정이 중요하였다.

  • PDF

Protection performance of dual flying oblique plates against yawed long rod penetrator (Yaw가 있는 긴 관통자에 대한 이중 비행경사판재의 방호성능 분석)

  • Paik, Seung-Hoon;;Yoo, Yo-Han;Lee, Min-Yeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.127-134
    • /
    • 2006
  • The protection capability against an enhanced long rod(L/D=30) with yaw is investigated numerically and compared with that of shorter one(L/D=15). In addition details of interactions between yawed long rods and oblique plate velocity are examined. Through the simulation results, we find that dual flying plates system is more effective with longer rod due to the elongated disturbance. The protection performance is more effective for the penetrator with $+6^{\circ}$ of yaw angle than that with a yaw angle of $-6^{\circ}$.

Evaluation of Ballistic Performance of Ceramic-Tile-Inserted Metal Block (세라믹 타일이 삽입된 금속 블록의 최적 방호구조 연구)

  • Lee, Seunghwan;Lee, Minhyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.297-304
    • /
    • 2016
  • A numerical simulation has been performed for the penetration of a long-rod penetrator into a metal block (ceramic-tile-inserted 4340-steel plate). The impact velocity is 1.5km/s at a normal incidence angle. The first two validations are conducted for a semi-infinite block measuring the depth of penetration (DOP). The material model of ceramic is the JH-2 (Johnson-Holmquist) model. The predicted DOP values are in close agreement with the experimental data. Then, the primary simulation is performed by varying the position of the confined ceramic tile for three types of thickness of ceramic tile. The residual velocity, residual mass and residual kinetic energy of the long-rod are obtained from the simulation. Based on these predicted values, the trend of the ballistic performance of the protective structure is estimated. In addition, the mass efficiency is calculated in order to determine the performance of the ceramic-tile-inserted metal block. Finally, the optimum protective structure is identified.