• Title/Summary/Keyword: 기후 예보 모델

Search Result 64, Processing Time 0.047 seconds

Role of the prediction skill of near-surface temperature in seasonal forecasting: A case study of U.S. droughts (근지표면 온도 예측성이 계절적 예보에 미치는 영향: 미국 가뭄의 사례연구)

  • Kam, Jonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.73-73
    • /
    • 2021
  • 가뭄의 계절적 예측성을 개선하기 위해서는 대기-지면-해양의 상호 작용이 현실적으로 모의할 수 있는 지구 기후 예보 모델의 개선이 필수적이다. 제한적인 기후 예보 모델의 예측성으로 인하여 다중 기후 모델들의 다중 앙상블 계절 예보 시스템이 제안되었다. 2008년에 제안된 북미 다중 모델 다중 앙상블 시스템(North American Multimodel Multiensemble System; NMME)은 다양한 모델 개발팀의 참여로 현재까지 운영되면서 계절적 예측성 연구에 큰 이바지를 하였다. 본 연구에서는 NMME 프로젝트에 참여하는 기후 예보 모델들의 북방 여름철 근지표면 온도과 강우량의 예측성을 진단하고 이들의 상관 관계의 강도를 관측데이터와 비교 분석하였다. 대부분의 NMME 모델들에서는 관측데이터에서 보다 강한 음의 상관 관계를 보였다. 이런 근지표면 온도와 강우량의 강한 상관 관계로 우수한 근지 표면 온도 예보는 각각의 해마다 그 역할이 다른 것을 발견되었다. 예를 들어 가문 여름에는 우수한 근지표면 온도 예보가 강우량 예보에 도움이 되고 강우량이 많은 여름에는 우수한 근지표면 온도 예보는 오히려 강우량 예측성을 제한하게 된다. 따라서 기존의 기후 예보 모델들에서 근지표면 온도와 강우량의 상관관계를 사실적으로 나타낼 수 있도록 모델 개선이 요구된다. 마지막으로 관측데이터와 기후 모델데이터에서 태평양과 대서양의 해수면 온도와 미국의 북방 여름철 날씨의 관계를 비교하였다. 근지표면 온도과 강우량에 대한 제한적 예측성에 비해, 대부분의 NMME 기후 예보 모델들에서 해수면 온도의 예측기술은 우수함을 발견하였고 몇몇 모델들에서는 미국의 북방 여름철 기후에 영향력을 주는 대서양과 태평양의 지역까지 잘 모사하는 것을 발견하였다. 따라서 본 연구는 보다 우수한 기후 예보 기술을 위해 앙상블 평균 예보값만이 아닌 NMME의 계절적 예보를 선택적인 사용이 필요함을 제안하였고 앞으로 북미 대륙 뿐만이 아니라 유럽-아시아의 계절적 이상 기후 예측성에 대한 연구 필요성을 강조하였다.

  • PDF

Assessment of Seasonal Forecast Skill of Springtime Droughts over Northeast Asia in Climate Forecast Models (기후 예보 모델의 동북아시아 봄철 가뭄 예측성 연구)

  • Jonghun Kam;Byeong-Hee Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.42-42
    • /
    • 2023
  • 최근 IPCC 6차 보고서에서는 전 지구의 온도가 0.5℃가 증가할 때마다 기상학적 가뭄 지역이 증가하며, 인위적 강제력은 가뭄 현상의 강도와 빈도를 증가하는 것으로 밝혔다. 봄철(3월-5월) 동남아시아(남중국, 필리핀 등)에 비해 상대적으로 건조한 동북아시아(동중국, 한반도, 일본) 지역은 가뭄에 취약하며 기후 변화에 따라 가뭄으로 인한 피해가 커질 것으로 전망된다. 그러므로 이 지역은 봄철 가뭄으로 인한 피해를 완화하기 위해 봄철 강수량에 대한 신뢰할 만한 계절적 예보 기술이 꼭 필요하다. 본 연구에서는 1992-2022년 봄철의 Standardized Precipitation Index(SPI) 값을 기준으로 2001년과 2011년 동북아시아 가뭄이 발생한 것을 확인하였으며, 각 해의 3월에 관측된 기상학적 초기 조건으로부터 다중 기후 예보 모델들의 봄철 강수량의 계절적 예측성을 정량적으로 평가하였다. 관측자료로부터 2001년 가뭄은 동북아시아 대기 상층의 저기압성 순환의 강화로 인한 제트류(Jet stream)의 강화와 연관되어 있었으며, 2011년 가뭄은 제트류 강화와 함께 태평양 열대 지역 기류 강화가 동반되어 발생하였음을 알 수 있었다. North American Multi-Model Ensemble 기후 예보 모델들은 2011년 가뭄에 비해 2001년 가뭄에 대한 예측성이 높았으며, 그 이유로는 대기 상층 순환의 예측성과 연관이 있음을 밝혔다. 또한, 봄철 대기-해양 상호 패턴을 관측과 유사하게 재현한 GFDL-SPEARS 모델이 가뭄 해의 대기 상층 저기압성 순환과 강수 예측성이 가장 높은 것을 보였다. 본 연구의 결과들을 통해 동북아시아 봄철 가뭄과 같은 극한 기상의 강수량 예측성 향상에 있어서 기후 예보 모델들의 현실적인 대기-해양 결합 과정 모사 능력의 중요성을 밝혔다. 본 연구에서 제안된 방안들은 기후 예측 모델 개선을 위한 전략적인 정보를 제공할 것으로 보인다.

  • PDF

Assessment of Flood Forecasting using Numerical Weather Prediction Data of Meso-Scale Model (메소스케일모델의 수치예보자료를 이용한 홍수예측 평가)

  • Moon, Hye Jin;Yu, Wan Sik;Jung, Kwan Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.134-134
    • /
    • 2017
  • 전 세계적으로 지구온난화로 인한 기후변화에 의해 다우지역의 집중호우 빈도 및 강도가 증가하여 치수 구조물의 설계 홍수 빈도를 초과하는 홍수 피해가 발생하고 있다. 이러한 피해를 경감하기 위한 홍수 예 경보의 선행시간 확보에는 정확한 강우 및 홍수예측이 필수적이다. 하지만 기존의 홍수예측 시스템은 관측 강우를 수문모형의 입력 자료로 사용하여 홍수 유출량을 계산하게 되는데, 태풍 및 국지성 집중호우 등과 같은 기상조건에서는 관측강우를 이용하여 홍수 예 경보 시스템을 운영할 경우 선행시간 확보의 어려움으로 인해 방재 효율성이 감소하게 된다. 이에 예측유량의 선행시간을 확보하기 위해서 정확한 강우예측이 선행되어야하며, 이를 위해서는 기상과 수자원 분야의 연계를 통한 홍수 예 경보 시스템 구축이 하나의 대안으로 대두되고 있다. 따라서 본 연구에서는 최근 기후 변화로 인한 국내의 홍수기 강우의 시 공간적 집중 현상으로 인한 호우 피해와 관련하여 신속하고 정확도 높은 홍수 예보의 중요성을 인지하고, 이에 대해 단기간 수치기상예보 자료를 활용하여 국내에 그 적용성을 평가하였다. 수치예보자료는 일본 기상청의 수치기상예보 모델인 중규모 모델(Meso-Scale Model, MSM)을 이용하였으며, 수문 모형은 강우-유출-범람모델(Rainfall-Runoff-Inundation, RRI)을 사용하였다. 대전광역시의 도심지를 통과하는 갑천유역을 대상 유역으로 하였으며, 홍수경보가 발생했던 강우 사상에 대해 강우 및 홍수 예측 정확도를 평가하였다.

  • PDF

Verification for applied water management technology of Global Seasonal forecasting system version 5 (확률장기예보GloSea5의 물관리 활용을 위한 검증)

  • Moon, Soojin;Hwang, Jin;Suh, Aesook;Eum, Hyungil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.236-236
    • /
    • 2016
  • 현재 댐운영 계획 수립 시 매월 유지해야 하는 저수량의 범위를 나타낸 기준수위가 사용되고 있으며 매년 홍수기 말에 현재의 수문 상황과 장래의 전망을 통한 시기별 연간, 월간 댐운영 계획을 수립하고 있다. 물관리의 이수측면에서 댐수위 운영계획 수립과 홍수기 운영목표 수위를 결정하는데 활용하기 위해서는 계절단위, 연단위의 기상정보가 필요하다. 본 연구에서는 기상청에서 운영하고 제공하는 전지구 계절예측시스템 GloSea5(Global Seasonal forecasting system version 5)자료를 활용하여 금강유역에 적용하고자 하였다. GloSea5는 전지구계절예측시스템으로 대기(UM), 지면(JULES), 해양(NEMO), 해빙(CICE)모델이 서로 결합되어 하나의 시스템으로 구성되어 있으며 공간 수평해상도는 N216($0.83^{\circ}{\times}0.56^{\circ}$)으로 중위도에서 약60km이다. Hindcast자료는 유럽중기예보센터(ECMWF)에서 생산된 ERA-Interim 재분석장을 대기 모델의 초기장으로 사용하며 기간은 1996~2009년의 총 14년이다. 예보자료의 검증은 예보의 질을 결정하는 과정으로 Brier Skill Score (BSS), Reliability Diagrams, Relative Operating, Characteristics (ROC)등을 통해 정확성과 오차에 의한 예보의 성능을 검증하였다. 또한 Glosea5의 통계적 상세화를 수행하여 다양한 변수가 갖는 계통적인 지역 오차를 보정함으로써 자료의 신뢰도를 향상시키고자 하였으며 이는 이후 수문모델과의 연계 시 보다 정확하고 효율적인 댐운영에 활용할 수 있는 기후예측정보를 제공할 수 있을 것으로 판단된다.

  • PDF

Development and Evaluation of Drought Outlook method Using Climate Prediction with Bayesian method (기후예측정보와 베이지안 기법을 활용한 가뭄전망기술 개발 및 평가)

  • Son, Kyung-Hwan;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.22-22
    • /
    • 2015
  • 가뭄은 적시에 경보해야 하는 홍수와 달리 진행속도가 느리고 시간적으로 대처할 여유가 있어 진행중일지라도 미리 감지만 한다면 그 피해를 최소화할 수 있다. 이로 인해 미국 등 수문기상 선진국에서는 수문기상 장기예보자료로부터 가뭄전망정보 생산기술을 개발하였으며, 특히 가뭄전망의 정확도 향상을 위해 여러 통계적 보정기법을 적용하고 있다. 국내의 경우 기상청에서 가뭄전망을 목적으로 2011년에 수치예보모델을 이용하여 가뭄전망정보를 생산한바 있으나, 전망정보의 불확실성 문제로 가뭄예보에 활용하는데 한계가 있어 이를 개선할 수 있는 기술개발이 요구되는 실정이다. 본 연구에서는 기후예측자료를 이용하여 가뭄전망정보 생산기술을 개발하고 정확도 개선을 위해 베이지안 기법을 연계하였다. GloSea5 (Global Seasonal forecast model 5) 장기예보자료를 이용하였으며, 베이지안 기법을 통해 과거 관측자료에 대한 사전분포, 모델의 전망정보로부터 우도함수를 유도하여 최종 사후분포를 추정하였다. 베이지안 기법 적용 전 후에 따른 가뭄지수를 산정하였다. 관측자료 기반의 가뭄지수와의 비교분석을 통해 선행기간 및 계절별 가뭄예측 성능을 평가하였으며, 실제 가뭄기간 동안에 가뭄의 재현성을 지역별로 분석하였다. 장기예보자료만을 활용한 기존 가뭄전망에서는 관측 자료가 포함된 1개월 전망에서도 불확실성이 매우 높았지만 베이지안 기법 적용으로 가뭄전망의 정확도가 크게 개선되었다. 특히, 1, 2개월 전망의 시계열 가뭄지수가 관측기반의 가뭄지수의 거동과 매우 유사하게 나타났으며, 지역별로도 베이지안 기법 적용시 실제 가뭄피해 상황을 적절히 재현하는 것으로 나타났다. 국내 가뭄예보에 있어 기후예측정보를 단순활용하기 보다는 베이지안과 같은 통계적 보정기법을 이용하여 가뭄전망정보를 생산하는 것이 바람직하며, 본 연구에서는 가뭄예보업무에 활용될 수 있도록 베이지안 기법에 대한 검증 및 평가를 지속적으로 수행할 계획이다.

  • PDF

Introduction of Hydrometeorological Drought Monitoring System (수문기상 가뭄정보 시스템 소개)

  • Kim, Min Ji;Oh, Tae Suk;Kang, Hye Young;Baek, Moonhee;Park, Cheol Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.317-317
    • /
    • 2019
  • 기상청에서는 시스템 이용자의 편의와 자료의 활용 증진을 위해 분리되어 있던 수문기상과 가뭄정보를 하나로 통합하여 '수문기상 가뭄정보 시스템(https://hydro.kma.go.kr)을 2017년 8월 1일부터 운영하고 있다. 본 시스템은 일반국민과 물관리 유관기관(회원)을 대상으로 관측, 수문기상 감시 예측, 기상 가뭄분석 전망으로 나눠 정보를 생산하여 서비스가 제공하고 있다. 수문기상 서비스는 관측 강수량(기상청, 유관기관), 기상청 위성 토양수분량 및 증발산량 자료와 레이더 관측 자료(Radar AWS Rainrate, RAR)를 GIS 기반 유역단위별(4대강권, 대권역, 중권역, 표준유역단위)로 관측 정보를 제공하며, UM(3km), 멀티모델앙상블, 레이더(MAPLE), 유역강수지수자료들로 예측 서비스를 제공하고 있다. 또한, 메타정보를 통해 유역별, 관측소별 상세조회가 가능하여 원하는 유역 또는 관측소를 선택 시 GIS지도에 위치가 표시되며 선택 지점의 정보를 손쉽게 확인할 수 있다. 가뭄 정보는 기상 가뭄 예보 정보와 가뭄 감시 정보를 제공하고 있다. 기상 가뭄 예보 정보는 매주 금요일에 발표되고 있는 기상 가뭄 예보 1개월 전망과 매월 10일경 관계부처(행정안전부, 기상청, 환경부, 농림축산식품부) 합동으로 발표하고 있는 가뭄 예 경보 3개월 전망자료를 제공하고 있으며, GIS 기반 행정구역 및 유역별로 나눠 여러 가지 가뭄지수(표준강수지수, 표준강수증발산지수, 강수평년비, 유효가뭄지수)를 활용하여 기상 가뭄 감시 정보를 제공하고 있다. 또한, 가뭄 감시 현황 정보는 다양한 형태(시계열, 가뭄지수 조회 및 다운로드, 분포도 비교)로도 확인할 수 있으며, 강수량분석 통계(누적 강수량, 강수량 순위, 무강수일수) 정보를 제공한다. 그 밖에 관측 자료(강수량 분포도, 토양수분량, 증발산량 등), 월별 언론모니터링 자료 등을 제공하고 있다. 향후 수문기상과 가뭄 재해에 선제적으로 대응하여 안정적인 물관리를 지원하고 자료의 신뢰도를 지속적으로 제고하여 우리나라에 맞는 수문기상 가뭄정보 시스템으로 거듭나도록 노력해 나갈 것이다.

  • PDF

A method in calculation watershed precipitation using long-term probabilistic forecasts for water management (확률장기예보 물관리 활용을 위한 유역강수량 산정 방법 연구)

  • Kang, Noel;Kang, Jaewon;Hwang, Jin;Suh, Ae-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.526-526
    • /
    • 2015
  • 우리나라는 국토의 대부분이 산악으로 이루어진 지형학적 특성과 여름철에 비가 집중된다는 기상학적 요인으로 인해 물관리가 어려운 편이다. 최근에는 기후변화로 인한 이상 기상 현상으로 돌발성 호우와 가뭄 등의 발생 빈도가 증대되면서 용수공급 관리는 더욱 더 어려움을 겪고 있다. 이러한 가운데 장기 기상정보는 안정적인 이수기 용수 공급을 위한 댐 수위 운영 및 홍수기 운영 목표 수위 계획 수립 등에 활용도가 매우 높다. 최근 기상청은 2014년 6월 이후부터 기존의 장기예보를 확률 예보 방식으로 변경하면서 기온과 강수량에 대하여 평년 대비 높음(많음), 비슷, 낮음(적음)으로 단순 예보하는 기존의 방식에서 발생가능성에 대해 카테고리 별로 확률(%)을 발표하고 있다. 기후변화의 불확실성이 증가하는 가운데 개정된 새로운 형태의 확률장기예보를 물관리에 정량적으로 적용하여 보다 정확도 높은 중장기 물관리 체계가 구축되어야 할 것이다. 본 연구는 현재 기상청에서 제공하는 확률장기예보를 실제 댐 운영에 적용하기 위한 연구로서 과거 자료와 확률장기예보를 조합하여 2014년 6월~2015년 2월의 유역 강수량의 확률 분포를 전망하였다. 대상 지역은 안동댐 유역으로 과거 자료는 최근린법에 기초한 기상청 산하 관측소인 안동, 태백, 봉화, 영주의 1986~2013년의 월 자료를 사용하였고, Thissen법을 근거로 유역 강수량을 계산하였다. 확률장기예보는 안동댐 유역을 포함하는 대구 경북지역을 대상으로 한 동일한 기간의 예보 자료를 활용하였다. 과거 강수량은 각 월별로 적합도 검정 후 Gamma분포를 채택하였으며 이를 기반으로 예보의 카테고리 별 기준값을 산정한 후 장기예보의 확률정보를 조합하여 강수량의 확률 분포를 작성하였다. 이를 2014년 6월~2015년 2월의 실제 강수량과 비교한 결과 2014년 11월과 2015년 1월 경우 가장 큰 확률의 카테고리 강수 범위 안에 실제 강수량이 포함되었으나 나머지 월에서는 실제 값과 카테고리 확률 간에 상이한 결과를 보였다. 본 연구는 예보 자료 수의 제한 및 안동댐과 예보 구역의 지역 차에 의한 자료 차이 등이 배제되어 있기 때문에 참고 자료로만 활용 될 수 있을 것이라고 판단되며, 확률장기예보 정보를 이용하여 유역 강수량의 확률 분포를 산정함으로서 물관리 부문에서 예보의 정량적 적용 가능성을 최초로 제시했다는 것에 의의가 있다. 추후 기후 모델 특성과 확률장기예보 산출 기법 등을 보다 심도 깊게 고려하여 정확도 개선에 대한 연구가 보완되어야 할 것으로 판단된다.

  • PDF

Application and Accuracy Improvement of Numerical Weather Prediction Data for Rainfall and Flood Forecasting (강우 및 홍수 예측을 위한 수치예보자료의 적용 및 정확도 개선)

  • Moon, Hyejin;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.10-10
    • /
    • 2018
  • 기후변화로 인한 집중호우의 빈도 및 강도가 증가하여 치수 구조물의 설계 홍수 빈도를 초과하는 피해가 발생하고 있다. 본 연구에서는 이러한 침수 피해를 저감하기 위해 수치예보자료를 활용한 홍수 예 경보시스템의 적용성을 비교 평가하였다. 수치예보자료는 국내 기상청에서 제공하는 국지예보모델(LDAPS)과 일본 기상청의 중규모모델(Meso-scale Model ; MSM)을 이용하였으며, 남강댐 유역 내의 산청 유역에 대해 태풍 및 정체 전선 등 3 개의 강우사상을 선정하였다. 강우유출 해석에는 분포형 수문 모형인 KWMSS(Kinematic Wave Method for Subsurface and Surface)를 이용하였다. 그 결과, LDAPS와 MSM 모두 강우발생 유무를 잘 재현하였다. 특히, 광역적 강우인 태풍사상에 대해 강우 예측에서 비교적 높은 정확도를 나타내었다. 강우 예측의 정확도 향상을 위해 강우장의 공간 변위를 고려하여 앙상블 강우 분포를 적용한 결과, 강우 예측의 정확도가 향상되는 것으로 나타났다. 홍수 예측의 경우 두 수치예보자료 모두 유출 패턴을 잘 재현하였다. 앙상블 홍수 예측 결과, 단일 강우 자료를 통한 홍수 예측에서의 예측 불확실성을 개선하는 것으로 나타났다. 3개의 강우 사상에 대해 MSM의 예측 결과가 LDAPS의 예측 결과보다 비교적 높은 상관관계를 나타내었다. 본 연구를 통해 강우 및 홍수 예측에 수치예보자료의 적용 가능성이 있다고 판단되며, 홍수 예 경보의 기초자료로 활용성이 있다고 판단된다.

  • PDF

Utility of Deep Learning Model for Improving Dam and Reservoir Operation: A Case Study of Seonjin River Dam (섬진강 댐의 수문학적 예측을 위한 딥러닝 모델 활용)

  • Lee, Eunmi;Kam, Jonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.483-483
    • /
    • 2022
  • 댐과 저수지의 운영 최적화를 위한 수문학적 예보는 현재 수동적인 댐 운영이 주를 이루면서 활용도가 높지 않다. 불확실한 기후변화나 기후재난 상황에서 우리 사회에 악영향을 최소화하기 위해 선제적으로 대응/대비할 수 있는 댐 운영 방안이 불가피하다. 강우량 예측 기술은 기후변화로 인해 제한적인 상황이다. 실례로, 2020년 8월에 섬진강의 댐이 극심한 집중 강우로 인해 무너지는 사태가 발생하였고 이로 인해 지역사회에 막대한 경제적 피해가 발생하였다. 선제적 댐 방류량 운영 기술은 또한 환경적인 변화로 인한 영향을 완화하기 위해 필요한 것이다. 제한적인 기상 예보 기술을 극복하고자 심화학습이나 강화학습 같은 인공지능 모델들의 활용성에 대한 연구가 시도되고 있다. 따라서 본 연구는 섬진강 댐의 시간당 수문 데이터를 이용하여 댐 운영을 위한 심화학습 모델을 개발하고 그 활용도를 평가하였다. 댐 운영을 위한 심화학습 모델로서 시계열 데이터 예측에 적합한 Long Sort Term Memory(LSTM)과 Gated Recurrent Unit(GRU) 알고리즘을 구축하고 댐 수위를 예측하였다. 분석 자료는 WAMIS에서 제공하는 2000년부터 2021년까지의 시간당 데이터를 사용하였다. 입력 데이터로서 시간당 유입량, 강우량과 방류량을, 출력 데이터로서 시간당 수위 자료를 각각 사용하였으며. 결정계수(R2 Score)를 통해 모델의 예측 성능을 평가하였다. 댐 수위 예측값 개선을 위해 하이퍼파라미터의 '최적값'이 존재하는 범위를 줄여나가는 하이퍼파라미터 최적화를 두 가지 방법으로 진행하였다. 첫 번째 방법은 수동적 탐색(Manual Search) 방법으로 Sequence Length를 24, 48, 72시간, Hidden Layer를 1, 3, 5개로 설정하여 하이퍼파라미터의 조합에 따른 LSTM와 GRU의 민감도를 평가하였다. 두 번째 방법은 Grid Search로 최적의 하이퍼파라미터를 찾았다. 이 두가지 방법에서는 같은 하이퍼파라미터 안에서 GRU가 LSTM에 비해 더 높은 예측 정확도를 보였고 Sequence Length가 높을수록 정확도가 높아지는 경향을 보였다. Manual Search 방법의 경우 R2가 최대 0.72의 정확도를 보였고 Grid Search 방법의 경우 R2가 0.79의 정확도를 보였다. 본 연구 결과는 가뭄과 홍수와 같은 물 재해에 사전 대응하고 기후변화에 적응할 수 있는 댐 운영 개선에 도움을 줄 수 있을 것으로 판단된다.

  • PDF

Radar rainfall forecasting evaluation using consecutive advection characteristics of rainfall fields (강우장의 연속 이류특성을 활용한 레이더 강수량 예측성 평가)

  • Kim, Tae-Jeong;Kim, Jang-Gyeong;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.39-39
    • /
    • 2021
  • 기상재해를 극소화하기 위해서는 그 원인이 되는 기상현상의 규모와 거동을 명확히 감시하고 분석하여 신뢰성 있는 예측정보가 제공되어야 한다. 최근 위험기상 발생빈도가 증가하여 초단기 및 위험기상 예보의 정확도 향상을 위한 고품질 레이더 정보 활용 연구가 활발하게 진행되고 있다. 레이더는 전자파를 이용하여 강우의 양과 분포, 이동특성을 관측하는 장비로써 우리나라는 초단기적 위험기상 대응능력 향상을 추진하기 위한 목적으로 첨단 성능의 이중편파레이더 관측망을 구축하고 있다. 국내 기상관측용 레이더는 기상예보(기상청), 홍수예보(환경부), 군 작전 기상지원(국방부) 등으로 각 기관이 개별적으로 설치운영 하고 있다. 본 연구에서는 관계부처에서 운영하고 있는 레이더의 합성장을 이용하여 강수장의 상관성을 기반으로 이류(advection) 특성을 도출하였다. 정확도 있는 이류특성을 도출하기 위하여 시간해상도는 10분을 적용하였으며 가우시안 필터링 기법을 적용하여 강수장 상관분석을 수행하였다. 호우와 태풍을 대상으로 강수장의 이류패턴을 추출하여 강수장의 이동방향 및 속도를 고려한 강수량 예측기법의 적용성을 평가하였다. 본 연구 결과는 격자형 강수예측정보를 제공하여 AI 홍수예보 및 수치예보 모델의 초기조건 입력 등에 활용되어 기후변동성에 따른 대국민 안전 실현을 확보하는데 기후변화 대응전략의 핵심기술로 활용될 수 있을 것으로 판단된다. 덧붙어, 4차 산업혁명에 따른 수문기상 빅 데이터(big data) 통합 플랫폼을 구축하여 고해상도 홍수대응 기술 및 GIS 및 모바일 시스템을 연계한 실시간 기후재해 예·경보가 가능할 것으로 사료된다.

  • PDF