• Title/Summary/Keyword: 기후 스트레스 시나리오

Search Result 18, Processing Time 0.027 seconds

Production and Spatiotemporal Analysis of High-Resolution Temperature-Humidity Index and Heat Stress Days Distribution (고해상도 온습도지수 및 고온 스트레스 일수 분포도의 제작과 이를 활용한 시공간적 변화 분석)

  • Dae Gyoon Kang;Dae-Jun Kim;Jin-Hee Kim;Eun-Jeong Yun;Eun-Hye Ban;Yong Seok Kim;Sera Jo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.446-454
    • /
    • 2023
  • The impact of climate change on agriculture is substantial, especially as global warming is projected to lead to varying temperature and humidity patterns in the future. These changes pose a higher risk for both crops and livestock, exposing them to environmental stressors under altered climatic conditions. Specifically, as temperatures are expected to rise, the risk of heat stress is assessable through the Temperature-Humidity Index (THI), derived from temperature and relative humidity data. This study involved the comparison of THI collected from 10 Korea Meteorological Administration ASOS stations spanning a 60-year period from 1961 to 2020. Moreover, high-resolution temperature and humidity distribution data from 1981 to 2020 were employed to generate high-resolution TH I distributions, analyzing temporal changes. Additionally, the number of days characterized by heat stress, derived from TH I, was compared over different time periods. Generally, TH I showed an upward trend over the past, albeit with varying rates across different locations. As TH I increased, the frequency of heat stress days also rose, indicating potential future cost increases in the livestock industry due to heat-related challenges. The findings emphasize the feasibility of evaluating heat stress risk in livestock using THI and underscore the need for research analyzing THI under future climate change scenarios.

Analysis of The Human Thermal Environment in Jeju's Public Parking Lots in Summer and Suggestion for Its Modification (제주시 공영 주차장 내 여름철 인간 열환경 분석 및 저감 방안 제안)

  • Choi, Yuri;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.18-32
    • /
    • 2024
  • This study aims to analyze the summer human thermal environment in Jeju City's outdoor parking lots by measuring microclimate data and comparing pavement and vegetation albedoes and elements through computer simulations. In measured cases, results due to albedo showed no significance, but there was a significant difference between sunny and shaded areas by trees. The sunny area had a PET (physiological equivalent temperature) in the 'very hot' level, while the shaded area exhibited a 2-step lower 'warm' level. UTCI (universal thermal climate index) also showed that the sunny area was in the 'very strong heat stress' level, whereas the shaded area was 1-step lower in the 'strong heat stress' level, confirming the role of trees in reducing incoming solar radiant energy. Simulation results, using the measured albedoes, closely resembled the measured results. Regarding vegetation, scenarios with a wide canopy, high leaf density, and narrow planting spacing were effective in mitigating the human thermal environment, and the differences due to tree height varied across scenarios. The scenario with the lowest PET value was H9W9L3D8 (tree height 9m, canopy width 9m, leaf area index 3.0, planting spacing 8m), indicating a 0.7-step decrease compared to the current landscaping scenario. Thus, it was confirmed that, among landscaping elements, trees have a significant impact on the summer human thermal environment compared to ground pavement.

Assessment of water supply reliability in the Geum River Basin using univariate climate response functions: a case study for changing instreamflow managements (단변량 기후반응함수를 이용한 금강수계 이수안전도 평가: 하천유지유량 관리 변화를 고려한 사례연구)

  • Kim, Daeha;Choi, Si Jung;Jang, Su Hyung;Kang, Dae Hu
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.993-1003
    • /
    • 2023
  • Due to the increasing greenhouse gas emissions, the global mean temperature has risen by 1.1℃ compared to pre-industrial levels, and significant changes are expected in functioning of water supply systems. In this study, we assessed impacts of climate change and instreamflow management on water supply reliability in the Geum River basin, Korea. We proposed univariate climate response functions, where mean precipitation and potential evaporation were coupled as an explanatory variable, to assess impacts of climate stress on multiple water supply reliabilities. To this end, natural streamflows were generated in the 19 sub-basins with the conceptual GR6J model. Then, the simulated streamflows were input into the Water Evaluation And Planning (WEAP) model. The dynamic optimization by WEAP allowed us to assess water supply reliability against the 2020 water demand projections. Results showed that when minimizing the water shortage of the entire river basin under the 1991-2020 climate, water supply reliability was lowest in the Bocheongcheon among the sub-basins. In a scenario where the priority of instreamflow maintenance is adjusted to be the same as municipal and industrial water use, water supply reliability in the Bocheongcheon, Chogang, and Nonsancheon sub-basins significantly decreased. The stress tests with 325 sets of climate perturbations showed that water supply reliability in the three sub-basins considerably decreased under all the climate stresses, while the sub-basins connected to large infrastructures did not change significantly. When using the 2021-2050 climate projections with the stress test results, water supply reliability in the Geum River basin was expected to generally improve, but if the priority of instreamflow maintenance is increased, water shortage is expected to worsen in geographically isolated sub-basins. Here, we suggest that the climate response function can be established by a single explanatory variable to assess climate change impacts of many sub-basin's performance simultaneously.

Estimating Radial Growth Response of Major Tree Species using Climatic and Topographic Condition in South Korea (기후와 지형 조건을 반영한 우리나라 주요 수종의 반경 생장 반응 예측)

  • Choi, Komi;Kim, Moonil;Lee, Woo-Kyun;Gang, Hyeon-u;Chung, Dong-Jun;Ko, Eun-jin;Yun, Byung-Hyun;Kim, Chan-Hoe
    • Journal of Climate Change Research
    • /
    • v.5 no.2
    • /
    • pp.127-137
    • /
    • 2014
  • The main purpose of this study is to estimate tradial growth response and to predict the potential spatial distribution of major tree species(Pinus densiflora, Quercus mongolica, Quercus spp., Castanea crenata and Larix kaempferi) in South Korea, considering climate and topographic factors. To estimate radial growth response, $5^{th}$ National Forest Inventory data, Topographic Wetness Index (TWI) and climatic data such as temperature and precipitation were used. Also, to predict the potential spatial distribution of major tree species, RCP 8.5 Scenario was applied. By our analysis, it was found that the rising temperature would have negative impacts on radial growth of Pinus densiflora, Castanea crenata and Larix kaempferi, and positive impacts on that of Quercus mongolica, Quercus spp.. Incremental precipitation would have positive effects on radial growth of Pinus densiflora and Quercus mongolica. When radial growth response considered by RCP 8.5 scenario, it was found that the radial growth of Pinus densiflora, Castanea crenata and Larix kaempferi would be more vulnerable than that of Quercus mongolica and Quercus spp. to temperature. According to the climate change scenario, Quercus spp. including Quercus mongolica would be expected to have greater abundance than its present status in South Korea. The result of this study would be helpful for understanding the impact of climatic factors on tree growth and for predicting the distribution of major tree species by climate change in South Korea.

Estimation and validation of the genetic coefficient of cv. Superior for the DSSAT-CSM (DSSAT 작물모형을 위한 수미품종의 품종모수의 결정과 기후변화에서의 활용)

  • Bak, Gyeryeong;Lee, Gyejun;Lee, Eunkyeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.166-174
    • /
    • 2018
  • Potato(Solanum tuberosum L.) is one of the major food crop in the world following rice, wheat, and maize. It is thus important to project yield predict of potato under climate change conditions for assessment of food security. A crop growth modelling is widely used to simulate crop growth condition and total yield of various crops under a given climate condition. The decision support system for agrotechnology transfer (DSSAT) cropping system model, which was developed by U.S. which package integrating several models of 27 different crops, have been used to project crop yield for the impact assessment of climate change on crop production. In this study, we simulated potato yield using RCP 8.5 climate change scenario data, as inputs to the DSSAT model in five regions of Korea. The genetic coefficients of potato cultivar for 'superior', which is one of the most widely cultivated potato variety in Korea were determined. The GenCalc program, which is a submodule of the DSSAT package, was used to determine the genetic coefficients for the superior cultivar. The values of genetic coefficients were validated using results of 39 experiments performed over seven years in five regions. As a case study, the potato yield was projected that total yields of potato across five regions would increase by 26% in 2050s but decrease by 17% in 2090s, compared with 2010s. These results suggested that the needs for cultivation and irrigation technologies would be considerably large for planning and implementation of climate change adaptation for potato production in Korea.

Development of Thermal Comfort Evaluation Map by the Land Cover in Yeongnam Region (영남지역의 토지피복에 따른 열쾌적성평가도 구축)

  • Kang, Dong-Hyun;Choi, Chul-Hyun;Jung, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.136-155
    • /
    • 2014
  • The purpose of this study is to analyze the thermal comfort in Yeongnam area using climatic data and GIS data in order to determine regions necessary to improve thermal environment policies. The results of the calculated PET show that Daegu city is high and Bonghwa-gun is low compared to other regions. PET was compared with the typical classification according to regional characteristics. As a result, PET value of rural areas such as Changnyeong-gun, Haman-gun and Goryeong-gun was high but Green space was too low compared to other rural areas. Yeongnam area was classified according to the value of PET using cluster analysis. As a result, more low grade areas show that green space ratio was low and facility area was high. It is determined that there is a relationship between thermal comfort and land cover. The thermal comfort evaluation map in Yeongnam area will be useful for urban planning in order to establish a sustainable city in climate change.

Analysis on dam operation effect and development of an function formula and automated model for estimating suitable site (댐의 운영효과 분석과 적지선정 함수식 및 자동화 모형 개발)

  • Choo, Taiho;Kim, Yoonku;Kim, Yeongsik;Yun, Gwanseon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.187-194
    • /
    • 2019
  • Intake ratio from river constitutes about 31% (8/26) that beings to "water stress country" as "Medium ~ High" with China, India, Italy, South Africa, etc. Therefore, the present study on a dam that is the most effective and direct for securing water resources has been performed. First of all, climate change scenarios were investigated and analyzed. RCP 4.5 and 8.5 with 12.5 km grid resolution presented in the IPCC (Intergovernmental Panel on Climate Change) 5th Assessment Report (AR5) were applied to study watershed using SWAT (Soil and Water Assessment Tool) and HEC-ResSim models that carried out co-operation. Based on the results of dam simulation, the reduction effects of floods and droughts were quantitatively presented. The procedures of dam projects of the USA, Japan and Korea were investigated. As a result, there are no estimating quantitative criteria, calculating methods or formulas. In the present study, therefore, indexes for selecting suitable dam site through literature investigation and analyzing dam watersheds were determined, Expert questionnaire for various indexes were performed. Based on the above mentioned investigation and expert questionnaire, a methodology assigning weight using AHP method were proposed. The function of suitable dam (FSDS) site was calibrated and verified for four medium-sized watersheds. Finally, automated model for suitable dam site was developed using FSDS and 'Model builder' of GIS tool.

Predicting Habitat Suitability of Carnivorous Alert Alien Freshwater Fish (포식성 유입주의 어류에 대한 서식처 적합도 평가)

  • Taeyong, Shim;Zhonghyun, Kim;Jinho, Jung
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Alien species are known to threaten regional biodiversity globally, which has increased global interest regarding introduction of alien species. The Ministry of Environment of Korea designated species that have not yet been introduced into the country with potential threat as alert alien species to prevent damage to the ecosystem. In this study, potential habitats of Esox lucius and Maccullochella peelii, which are predatory and designated as alert alien fish, were predicted on a national basis. Habitat suitability was evaluated using EHSM (Ecological Habitat Suitability Model), and water temperature data were input to calculate Physiological Habitat Suitability (PHS). The prediction results have shown that PHS of the two fishes were mainly controlled by heat or cold stress, which resulted in biased habitat distribution. E. lucius was predicted to prefer the basins at high latitudes (Han and Geum River), while M. peelii preferred metropolitan areas. Through these differences, it was expected that the invasion pattern of each alien fish can be different due to thermal preference. Further studies are required to enhance the model's predictive power, and future predictions under climate change scenarios are required to aid establishing sustainable management plans.