• Title/Summary/Keyword: 기후일치도

Search Result 168, Processing Time 0.027 seconds

A Reflectance Normalization Via BRDF Model for the Korean Vegetation using MODIS 250m Data (한반도 식생에 대한 MODIS 250m 자료의 BRDF 효과에 대한 반사도 정규화)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.445-456
    • /
    • 2005
  • The land surface parameters should be determined with sufficient accuracy, because these play an important role in climate change near the ground. As the surface reflectance presents strong anisotropy, off-nadir viewing results a strong dependency of observations on the Sun - target - sensor geometry. They contribute to the random noise which is produced by surface angular effects. The principal objective of the study is to provide a database of accurate surface reflectance eliminated the angular effects from MODIS 250m reflective channel data over Korea. The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor has provided visible and near infrared channel reflectance at 250m resolution on a daily basis. The successive analytic processing steps were firstly performed on a per-pixel basis to remove cloudy pixels. And for the geometric distortion, the correction process were performed by the nearest neighbor resampling using 2nd-order polynomial obtained from the geolocation information of MODIS Data set. In order to correct the surface anisotropy effects, this paper attempted the semiempirical kernel-driven Bi- directional Reflectance Distribution Function(BRDF) model. The algorithm yields an inversion of the kernel-driven model to the angular components, such as viewing zenith angle, solar zenith angle, viewing azimuth angle, solar azimuth angle from reflectance observed by satellite. First we consider sets of the model observations comprised with a 31-day period to perform the BRDF model. In the next step, Nadir view reflectance normalization is carried out through the modification of the angular components, separated by BRDF model for each spectral band and each pixel. Modeled reflectance values show a good agreement with measured reflectance values and their RMSE(Root Mean Square Error) was totally about 0.01(maximum=0.03). Finally, we provide a normalized surface reflectance database consisted of 36 images for 2001 over Korea.

Detection and Assessment of Forest Cover Change in Gangwon Province, Inter-Korean, Based on Gaussian Probability Density Function (가우시안 확률밀도 함수기반 강원도 남·북한 지역의 산림면적 변화탐지 및 평가)

  • Lee, Sujong;Park, Eunbeen;Song, Cholho;Lim, Chul-Hee;Cha, Sungeun;Lee, Sle-gee;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.649-663
    • /
    • 2019
  • The 2018 United Nations Development Programme (UNDP) report announced that deforestation in North Korea is the most extreme situation and in terms of climate change, this deforestation is a global scale issue. To respond deforestation, various study and projects are conducted based on remote sensing, but access to public data in North Korea is limited, and objectivity is difficult to be guaranteed. In this study, the forest detection based on density estimation in statistic using Landsat imagery was conducted in Gangwon province which is the only administrative district divided into South and North. The forest spatial data of South Korea was used as data for the labeling of forest and Non-forest in the Normalized Difference Vegetation Index (NDVI), and a threshold (0.6658) for forest detection was set by Gaussian Probability Density Function (PDF) estimation by category. The results show that the forest area decreased until the 2000s in both Korea, but the area increased in 2010s. It is also confirmed that the reduction of forest area on the local scale is the same as the policy direction of urbanization and industrialization at that time. The Kappa value for validation was strong agreement (0.8) and moderate agreement (0.6), respectively. The detection based on the Gaussian PDF estimation is considered a method for complementing the statistical limitations of the existing detection method using satellite imagery. This study can be used as basic data for deforestation in North Korea and Based on the detection results, it is necessary to protect and restore forest resources.

Estimation of Soybean Growth Using Polarimetric Discrimination Ratio by Radar Scatterometer (레이더 산란계 편파 차이율을 이용한 콩 생육 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.878-886
    • /
    • 2011
  • The soybean is one of the oldest cultivated crops in the world. Microwave remote sensing is an important tool because it can penetrate into cloud independent of weather and it can acquire day or night time data. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. In this study, soybean growth parameters and soil moisture were estimated using polarimetric discrimination ratio (PDR) by radar scatterometer. A ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the soybean growth condition and soil moisture change. It was set up to obtain data automatically every 10 minutes. The temporal trend of the PDR for all bands agreed with the soybean growth data such as fresh weight, Leaf Area Index, Vegetation Water Content, plant height; i.e., increased until about DOY 271 and decreased afterward. Soil moisture lowly related with PDR in all bands during whole growth stage. In contrast, PDR is relative correlated with soil moisture during below LAI 2. We also analyzed the relationship between the PDR of each band and growth data. It was found that L-band PDR is the most correlated with fresh weight (r=0.96), LAI (r=0.91), vegetation water content (r=0.94) and soil moisture (r=0.86). In addition, the relationship between C-, X-band PDR and growth data were moderately correlated ($r{\geq}0.83$) with the exception of the soil moisture. Based on the analysis of the relation between the PDR at L, C, X-band and soybean growth parameters, we predicted the growth parameters and soil moisture using L-band PDR. Overall good agreement has been observed between retrieved growth data and observed growth data. Results from this study show that PDR appear effective to estimate soybean growth parameters and soil moisture.

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula (한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인)

  • Kim, Hee-Young;Park, Kyung-Ae;Kwak, Byeong-Dae;Joo, Hui-Tae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.604-617
    • /
    • 2022
  • Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.

A Study on the Application of IUCN Global Ecosystem Typology Using Land Cover Map in Korea (토지피복지도를 활용한 IUCN 생태계유형분류 국내 적용)

  • Hee-Jung Sohn;Su-Yeon Won;Jeong-Eun Jeon;Eun-Hee Park;Do-Hee Kim;Sang-Hak Han;Young-Keun Song
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.3
    • /
    • pp.209-220
    • /
    • 2023
  • Over the past few centuries, widespread changes to natural ecosystems caused by human activities have severely threatened biodiversity worldwide. Understanding changes in ecosystems is essential to identifying and managing threats to biodiversity. In line with this need, the IUCN Council formed the IUCN Global Ecosystem Typology (GET) in 2019, taking into account the functions and types of ecosystems. The IUCN provides maps of 10 ecosystem groups and 108 ecological functional groups (EFGs) on a global scale. According to the type classification of IUCN GET ecosystems, Korea's ecosystem is classified into 8 types of Realm (level 1), 18 types of Biome (level 2), and 41 types of Group (level 3). GETs provided by IUCN have low resolution and often do not match the actual land status because it was produced globally. This study aimed to increase the accuracy of Korean IUCN GET type classification by using land cover maps and producing maps that reflected the actual situation. To this end, we ① reviewed the Korean GET data system provided by IUCN GET and ② compared and analyzed it with the current situation in Korea. We evaluated the limitations and usability of the GET through the process and then ③ classified Korea's new Get type reflecting the current situation in Korea by using the national data as much as possible. This study classified Korean GETs into 25 types by using land cover maps and existing national data (Territorial realm: 9, Freshwater: 9, Marine-territorial: 5, Terrestrial-freshwater: 1, and Marine-freshwater-territorial: 1). Compared to the existing map, "F3.2 Constructed lacustrine wetlands", "F3.3 Rice paddies", "F3.4 Freshwater aquafarms", and "T7.3 Plantations" showed the largest area reduction in the modified Korean GET. The area of "T2.2 Temperate Forests" showed the largest area increase, and the "MFT1.3 Coastal saltmarshes and reedbeds" and "F2.2 Small permanent freshwater lakes" types also showed an increase in GET area after modification. Through this process, the existing map, in which the sum of all EFGs in the existing GET accounted for 8.33 times the national area, was modified so that the total sum becomes 1.22 times the national area using the land cover map. This study confirmed that the existing EFG, which had small differences by type and low accuracy, was improved and corrected. This study is significant in that it produced a GET map of Korea that met the GET standard using data reflecting the field conditions. 

Seasonal Whole-plant Carbon Balance of Phyllospadix iwatensis on the Coast of the Korean Peninsula (한반도 연안에 분포하는 새우말의 탄소수지 계절적 변동)

  • SEUNG HYEON KIM;JONG-HYEOB KIM;HYEGWANG KIM;JIN WOO KU;KI YOUNG KIM;KUN-SEOP LEE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.28-41
    • /
    • 2024
  • The carbon balance serves as a valuable indicator of a plant's physiological status under diverse environmental conditions. We investigated the photosynthetic and respiratory responses of the Asian surfgrass Phyllospadix iwatensis along the northeast coast of the Korean peninsula in response to changing water temperature (ranging from 5℃ to 30℃) to estimate the seasonal whole-plant carbon balance through a series of incubation experiments. The maximum gross photosynthetic rate (Pmax) showed a significant difference among the temperature treatments, while there was no significant difference in photosynthetic efficiency (α). The maximum gross photosynthetic rate of P. iwatensis reached its peaks at 20℃ treatment (101.65 μmol O2 g-1 DW h-1) but decreased rapidly at 30℃. The saturation irradiance (Ik), compensation irradiance (Ic), and respiration rate (R) of P. iwatensis exhibited significant differences among the temperature treatments. The saturation irradiance increased up to 20-25℃ (121.59-124.50 μmol photons m-2 s-1) and sharply decreased at 30℃. The compensation irradiance and respiration rate increased steadily with rising water temperature. The ratio of Pmax to R (Pmax:R ratio) was the highest at 5℃ but dramatically decreased at 30℃. The whole-plant carbon balance, calculated based on photosynthetic parameters, respiration rates, and biomass, exhibited distinct seasonal variation, increasing during winter and spring and decreasing during summer and fall, which is consistent with the highest in situ growth in spring and severely limited growth at the highest water temperature conditions. Phyllospadix iwatensis displayed a negative carbon balance during late summer, fall, and winter, but demonstrated a positive carbon balance during spring and early summer. Our findings suggest that the rising seawater temperatures associated with climate change may lead to significant alterations in the seagrass ecosystem functioning along the rocky shores of the Korean east coast.

An Evaluation of Polycross Progenies for Leaf and Plant Characteristics in Winter Active Tall Fescue (Festuca arundinacea Schreb.) - I. Summer Forage Phase (동기생육형(冬期生育型) 톨페스큐의 엽(葉)및 지상부형질(地上部形質)에 관(關)한 다교배(多交配) 후대검정(後代檢定))

  • Kim, Dal Ung
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.2
    • /
    • pp.357-373
    • /
    • 1975
  • This study was conducted to evaluate the winter active polycross progenies of 10 genotypes selected at the hot and dry climate of the Southern Oregon in their performance in the progeny test comparing with a high yielding variety, 'Fawn', and a winter active variety, 'TFM', as the control varieties at Daejon, Korea. Various plant and leaf characteristics, especially which related to photosynthesis, and forage production during the first summer after their establishment, were examined. The important conclusions of this study are summarized as follows: 1. The winter active genotypes and variety had less leaf fresh weight and dry weight per leaf than variety 'Fawn'. Variations among polycross progenies of genotypes for these characteristics were great. 2. The winter active genotypes and variety had less leaf area per leaf than variety 'Fawn'. Leaf area among polycross progenies of genotypes deviated greatly and poly cross progenies of 'genotype-16' had the same average leaf area as 'Fawn'. 3. Differences of specific leaf weight (S. L. W.) in the winter active genotypes and variety were not significant. Probably the genetic diversity for S. L. W were not big and were narrowed down already in this genetic population. It was suggested that the photosynthate production within the population might not be different and there might be differences in the photosynthate production-translocation balance. Further study for the diurnal change in S. L. W. within the population might be useful. 4. The winter active variety and genotypes had less leaf width than 'Fawn' does. Leaf width among polycross progenies of genotypes deviated significantly. 5. Differences among controls and polycross progeny group in the initial plant height were significant and variety 'Fawn' was taller than the winter active genotypes and variety. But the differences were not significant in the regrowth of plant height after the first forage harvest. On the contrary. the differences among polycross progenies of genotypes were not significant in the initial plant but the differences in their polycross progeny performance became obvious and great in the regrowth ability which is an improtent agronomic characteristics for forage crops produced in the pasture and for hay and silage. 6. Plant width of the winter active genotypes and variety was lesser than 'Fawn' variety. 7. Differences of tiller number became evident and variety 'Fawn' had higher tiller number than the winter active genotypes and variety after the first forage cutting. There, deviations among polycross progenies of genotypes were great for this characteristic. It was obvious that the genetic differences became more evident in the second measurement after the first cutting of forage probably because this characteristic were stimulated by defoliation in the cartain genotypes and variety. 8. The winter active genotypes and variety on the initial growth. the regrowth ability andtotal yield had lesser forage yield than variety 'Fawn'. Deviation of forage yield among polycross progenies of genotypes were great and gave basis for selection according to their polycross progeny performance improving the forage yield of these winter active tall fescue population during summer. 9. It was concluded that the winter active variety and genotypes in this study was poorer than variety 'Fawn' for the most of leaf and plant characteristics including forage yield. For these measurements, the variations among polycross progenies of genotypes were great. and plant breeding might able to improve further this winter active tall fescue through the polycross progeny testing method for the higher forage production during summer in Korea. 10. The result of the associations among various characteristics under study were quite agreeable with the results of the analysis of variance and woul be useful in the selection of desirable genotypes for the development of a new variety.

  • PDF

An Evaluation of Various Synthetic Generations and Polycross Progenies in Winter Active Tall Fescue (Festuca arundinacea Schreb) - I. Summer Forage Phase (동기생육형(冬期生育型) 톨페스큐의 합성품종세대(合成品種世代)와 다계교배(多系交配) 후대검정(後代檢定)에 관(關)한 연구(硏究))

  • Kim, Dal Ung
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.2
    • /
    • pp.341-356
    • /
    • 1975
  • This study was carried out to evaluate three winter active synthetic varieties in a succeeding generations of improvement and polycross progenies of seven genotypes selected at the cool and wet climate of the Western Oregon, in their performance of the polycross progeny test comparing with a control variety, high yielding 'Fawn', at Daejon, Korea. Various plant and leaf characteristics, especially related to photosynthesis, and forage production during the first summer after the establishment were examined. The important conclusions of this study are summarized as follows: 1. The differences of leaf fresh weight among groups and control exhibit genetic differences. The a verage of leaf fresh weight of polycross progeny group was the heaviest and those of winter active synthetic varieties in the succeeding generations of improvement was heavier than variety 'fawn'. Within polycross progeny group the genotypes exhibit genetic differences for leaf dry weight. 2. The leaf area exhibited genetic differences among groups and control. The average of winter active synthetic varieties in a succeeding generation was larger than variety 'Fawn'. Those oi the polycross progeny group was the largest among groups and control. 3. Differences of specific leaf weight(S. L. W.) among and within varieties, genotypes and control were not significant. Further investigation in this respect is necessary through the study of the diurnal change in S. L. W. 4. Differences of leaf width among groups and control exhibited genetic differences. The average leaf width of winter active varieties was larger than those of 'Fawn' variety. And those of polycross progenies of genotypes was the largest. 5. Plant height of 'fawn' variety in the first measurement was higher than those of winter active tall fescue varieties and genotypes. The deviation in plant height among polyeross progenies of seven genotypes gave a great deviation. The regrowth ability of plant height was not different suggesting that this characteristics was about the same among and within groups and control. 6. Plant width, spreading ability, improved through the succeeding generations of the improvement of the winter active synthetic varieties for the first measurement. Differences of plant width at the second measurement among genotypes within polycross progeny group were big enough to show the genetic difference. 7. Tiller number of the winter active synthetic varieties and the average of genotypes in polycross progeny was more than those of the control 'Fawn' in the first measurement. On the second measurement, the differences of tiller number appeared among three synthetic varieties indicating improvement, and there were genetic differences among seven genotypes in polycross progeny test. 8. Forage yield on the first cutting showed a considerble improvement of forage yield in the more advanced generation of synthetic varieties and genetic differences among seven genotypes in the polycross progeny test. The average of polycross progeny group was higher than those of the control or three winter active varieties. It was suggested that we could make a further improvement for the forage yield. 9. The regrowth ability of these winter active varieties and genotypes was about the same capacity at least on the measurement of the regrowth in forage yield and plant height during summer. 10. On the whole, the averages of the polycross progeny group was in the highest value and those of synthetic varieties were higher than the control variety, 'Fawn', for the most characteristics except S. L. W. and the plant height on the first measurement even though the differences were not always significant. And there were genetic differences among seven gentypes in their performance of the polycross progeny. 11. Although it was not always sgnificant, the most advanced winter active variety, '1002', had in the highest value for all plant characteristics and forage yield measurements than the other two varieties, '1001'. 12. The results of the association study among various characteristics were quite agreeable and would be useful in the selection of desirable genotypes for the development of a better variety.

  • PDF