• Title/Summary/Keyword: 기후변화 자료 상세화

Search Result 112, Processing Time 0.039 seconds

Development of gap filling technique for statistical downscaling of cimate change scenario data (기후변화 시나리오 자료의 통계적 상세화를 위한 결측자료 보정 기법 개발)

  • Cho, Jaepil;Kim, Kwang-Hyung;Park, Jihoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.16-16
    • /
    • 2019
  • 기후변화 시나리오 및 계절예측 자료를 포함한 기후정보를 수자원 분야에 활용하기 위해서는 기후정보의 시 공간적인 상세화(donwscaling)을 필요로 한다. 상세화의 경우 역학적 상세화와 통계학적 상세화로 구분될 수 있으며, 통계학적 상세화를 위해서는 대상 지역의 기후특성을 대표할 수 있는 장기 관측 자료의 확보가 중요하다. 국내의 경우에는 자동기상관측장비(Automatic Weather System, AWS)와 종관기상관측장비(Automatic Synoptic Observation System, ASOS)로 부터 수집된 기상관측자료를 사용할 수 있으나 기후변화 시나리오의 통계적 상세화를 위해서는 30년 이상의 자료 기간을 포함하는 ASOS 자료가 적합하다. 하지만 개발도상국과 같이 기상관측기반이 열악한 지역에서는 잦은 결측 등으로 인하여 품질이 좋은 관측자료의 획득이 어려운 상황이다. 따라서 본 연구에서는 측이 포함된 장기 기상관측 자료로부터 대상 지역의 기후특성을 재현할 수 있도록 기본적인 QC(Quality Control)을 거쳐 결측 자료를 보완할 수 있는 기법 및 R 기반패키지를 개발하여 적용성을 평가하였다. 개발된 기법의 적용성 평가를 위해서 기상청에서 QC를 통해 제공하고 있는 60개 ASOS 지점의 관측자료 중 강수량과 기온 변수를 사용하였다. 최대 50%까지의 현실적인 결측 패턴을 임의로 생성하기 위해 실제 개발도상국 관측자료의 일단위 결측 패턴을 이용하였다. 자료의 QC는 관측일 누락/중복 및 문자형 관측값 등 기본적인 오류 검사, 기온의 경우 물리적 허용 범위에 대한 검사, 최고기온과 최저기온의 비교 및 계측기 오작동에 의한 동일한 값의 반복 등을 포함한 내적 일치성 검사를 우선적으로 수행한다. 이후 결측값에 대해서 인근 기상관측소와의 상관성 분석 결과를 기반으로 결측값을 채우고, 최종적으로는 다양한 위성자료 및 재분석 자료 중에서 일단위 기후특성의 재현성 평가를 통해 선정된 격자형 자료와의 상관성 분석 결과를 기반으로 결측값을 보정하였다. 기온의 경우는 결측률이 높더라도 월평균 기후특성에 큰 영향을 미치지 않았지만 강수의 경우에는 5% 이상의 결측이 발생하는 경우 월평균 강수량에 영향을 미쳐 지역의 강수량을 과소 추정하는 결과를 보였다. 개발된 QC 기법을 강수 자료에 적용한 결과 월평균 기후특성을 잘 복원하는 결과를 보였지만, 일단위 강우 사상의 재현에 있어서는 미흡한 결과를 보였다.

  • PDF

Changes projection in the Future Extreme Precipitation over South Korea using the HadGEM3-RA (HadGEM3-RA를 이용한 한반도 미래 극한강수 변화 전망)

  • Sung, Jang-Hyun;Kang, Hyun-Suk;Park, Su-Hee;Cho, Chun-Ho;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.343-343
    • /
    • 2012
  • 미래 극한사상의 초과확률을 산정하기 위하여 저해상도의 전지구 기후변화 시나리오 자료를 그대로 사용하거나 이를 역학적 또는 통계적 방법으로 상세화한 고해상도 기후변화 시나리오 자료를 활용한다. 통계적 상세화는 전지구 또는 지역기후모델의 현재기후 모의 자료와 관측 자료와의 통계적 관계를 미래 예측자료에 적용하는 방법으로, 현재와 미래 기후의 시공간적 분포가 동일하다는 가정을 포함하고 있다. 반면 역학적 상세화 방법은 기후변화 강제력을 고려하는 지역기후모델을 이용하여 기후시스템의 역학 및 물리과정, 기후시스템간 의 상호작용, 기후변화의 비정상성 등을 고려할 수 있고, 변수간의 시공간적 상관성을 지구시스템의 물리 역학적 과정으로 해석할 수 있다는 장점이 있다. 이에 국립기상연구소에서는 영국 기상청의 통합모델(UM)기반의 지역기후모델(HadGEM3)을 사용하여 50 km 및 12.5 km 격자 단위로 역학적 상세화(dynamic downscaling)를 수행하였다. 본 연구에서는 역학적 상세화로 생산된 HadGEM3-RA 자료를 이용하여 현재기후(1980-2005), 가까운 미래(2020-2049)와 21세기말(2070-2099)의 20년 빈도 강수량을 비교하였다. 연구결과, 남한에 걸쳐 현재기후에 비하여 미래에는 극한강수의 크기와 빈도가 전반적으로 증가하는 경향을 확인할 수 있었다. 20년에 한번씩 발생하였던 일 극한강수는 RCP8.5를 고려한 21세기말에는 약 4년에 한번씩 발생하리라 전망되었다.

  • PDF

Application and Evaluation of improving techniques for watershed water cycle using downscaled climate prediction (상세화 기후전망자료를 활용한 유역 물순환 개선 기술 적용 및 평가)

  • Jang, Cheol Hee;Kim, Hyeon Jun;Cho, Jae Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.334-334
    • /
    • 2019
  • 기후변화에 능동적으로 대처하기 위해서는 기후변화에 따른 수자원가용량의 변화를 정량적으로 평가할 수 있어야 한다. 평가결과의 신뢰도를 높이기 위해서 기후변화 시나리오는 지역기후 및 유역특성에 적합한 결과를 포함하여야 한다. 또한, 기후변화가 유역의 물순환계에 미치는 영향이 있다면, 물순환 개선 기술을 통해 지속가능한 유역 물환경을 구축하는 것이 필요하다. 유역 물순환 개선 기술은 기후변화가 진행 중에 있거나 예상되는 지역에 대하여 강우로부터 발생되는 유출을 지연, 저류, 침투시켜 지속가능한 물순환 체계를 유지하고 회복하도록 하는 기법이라 할 수 있다. 한국건설기술연구원에서는 기후변화에 따른 영향을 평가하고 적응 대책을 수립하기 위한 실무적인 유역 물순환 개선 및 평가 모형인 CAT3(Catchment hydrologic cycle Assessment Tool 3)을 개발하였으며 본 모형은 침투시설, 저류시설, 습지, 빗물저장시설과 같은 물순환 개선시설에 대한 효과를 정량적으로 평가할 수 있다. 본 연구에서는 팔당댐 상류의 경안천 유역을 대상으로 APCC 기후변화 시나리오 통계적 상세화 자료를 활용하여 물순환 개선 기술의 적용성을 평가하였다. 통계적 상세화 자료는 APCC에서 개발된 AIMS(APCC Integrated Modeling Solution) 플랫폼을 이용하였다. AIMS는 다양한 기후정보를 기반으로 사용자 관점에서 상세화를 수행할 수 있는 장점이 있다. 상세화 기법은 SDQDM(Spatial Disaggregation Quantile Delta Mapping) 방법을 이용하였다. 상세화된 기후자료는 과거자료의 재현성 및 미래 기간에 대한 왜곡도를 평가하기 위해 극한기후지수(Climate Index)를 이용하는데 본 연구에서는 장기간에 걸친 수자원가용량의 평가 및 예측을 위해 연강수량(PRCPTOT)을 사용하였으며 증발산량의 평가 및 예측에 영향을 미치는 온도 관련 극한기후지수는 평균기온 개념의 DTR(TMAX&TMIN)을 이용하였다. 통계적 상세화 과정을 통해 최종적으로 HadGEM2-CC, INMCM4, CanESM2 시나리오를 선택하였으며 각 시나리오별 물순환 개선 기술을 적용한 후 미래의 수문학적 변동성을 평가하였다.

  • PDF

A Statistically Downscaling for Projecting Climate Change Scenarios over the Korean Peninsula (한반도지역에 대한 미래 기후변화 시나리오의 통계적 상세화)

  • Shin, Jin-Ho;Lee, Hyo-Shin;Kwon, Won-Tae;Kim, Min-Ji
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1191-1196
    • /
    • 2009
  • 온실가스 증가에 따른 미래 기후변화가 수자원에 미치는 영향을 평가하기 위하여 전구기후모델(AOGCM)의 기온과 강수 자료를 이용하여 한반도 지역에 대한 통계적 규모 상세화(statistical downsacaling, SDS) 기법을 개발하였다. 개발된 기법은 Cyclostationary Empirical Orthogonal Function (CSEOF) 분석과 회귀분석을 결합한 것으로 관측과 AOGCM 시계열의 통계적 상관성을 이용하고 있다. 20세기말(1973-2000) 동안의 광역규모의 기온(ECMWF)과 강수량(CMAP) 및 AOGCM의 기온과 강수량 자료에 통계적 상세화 기법을 적용하고 비교함으로써 이 기법의 유효성을 검증하였는데, 상세화된 기온과 강수량 자료는 관측된 계절변동성과 월변동성을 잘 모사하였다. 특히, 여름철 관측에 비해 저평가된 AOGCM의 강수량 크기와 변동성이 상세화를 통해 관측치에 근접하게 되었다. AOGCM의 미래 강수량 변화는 21세기 후반에 계절적으로 봄과 여름에 증가할 것을 예상되었다. 상세화된 AOGCM의 강수는 겨울을 제외한 모든 계절에서, 특히 여름철에 가장 많이 증가할 것으로 전망되었다. AOGCM의 미래 기온변화는 21세기 후반으로 갈수록 상승하며, 계절적으로 겨울철의 기온 상승폭이 더 클 것으로 전망되는데, AOGCM을 상세화한 결과에서는 겨울과 더불어 여름에도 기온 상승폭이 클 것으로 전망되었다. 개발된 기법은 역학적 결과와 관측과의 통계적 상관성을 이용하기 때문에 광역규모의 기후적 특성뿐만 아니라 한반도 지형 등 지역적 특성도 모두 반영함과 더불어 광역규모의 자료를 빠른 시간내에 효과적으로 상세화시킬 수 있는 장점도 지닌다. 한편 상세화에 사용된 CSEOF의 모드수 등에 따른 불확실성 등은 통계적 상세화 과정에 개선될 여지가 남아있음을 보여준다.

  • PDF

Future climate forecast of urban region under climate change (기후변화에 따른 도시지역 미래 기후전망)

  • Lee, Sang-Hun;Lee, Moon-Hwan;Kim, Dong-Chan;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.93-93
    • /
    • 2011
  • 전 세계적으로 기후변화로 인한 기상재해의 피해가 매년 증가하고 있으며, 기후변화로 인한 시민들의 안전, 재산, 인명피해 또한 늘어나고 있다. 이러한 피해를 최소화하기 위해서는 도시지역을 중심으로 한 신뢰성 높은 미래 기후전망 기법이 필수적이며, 미래 기후전망을 바탕으로 하여 기후변화로 인한 향후 발생할 수 있는 위험성의 정도를 전망하여 적응대책을 수립할 필요가 있다. 본 연구에서는 도시지역의 미래 기후전망 기법을 개발하여 서울시의 미래기후를 전망한다. 본 연구를 수행하기 위하여 먼저 IPCC 기후시나리오에 대한 조사를 수행하여 자료를 수집한다. 수집한 자료를 바탕으로 역학적 상세화와 통계적 상세화 기법을 이용하여 고해상도 기후 시나리오를 생산하였다. 역학적 상세화 기법은 A2시나리오의 ECHO-G/S에서 생산된 기후 시나리오를 이용하여 지역 기후모델인 RegCM3에 적용하여 상세화 과정을 수행하였다. RegCM3를 이용하여 60km로 상세화한 후에 one-way double-nested system을 구축하여 20km까지 상세화 하였다. 20km 해상도의 기후 시나리오는 서울시와 같은 좁은 지역의 기후를 분석하기에는 어려움이 있으므로, RegCM3에 사용할 수 있는 Sub-BATS라는 기법을 이용하여 5km의 고해상도 기후 시나리오를 생산하였다. 역학적 상세화 결과는 관측결과에 비해 과소 추정되는 경향이 있어, 편차보정을 통하여 관측값에 가까운 자료를 만들어 주었다. 역학적 상세화 결과를 분석한 결과, 기준기간에 비해 미래기간(S3)에는 전체적으로 약 4.9도의 기온상승과 강수량 증가가 나타났으며, 특히 9월에 가장 큰 상승폭을 나타내고 있었다. 강수량의 경우 증가 경향이 뚜렷이 나타나고 있었으며, 여름철에 큰 증가폭을 나타내고 있었다. 통계적 상세화 기법은 역학적 상세화 기법에서 사용된 ECHO-G/S를 포함한 13개의 GCM결과와 우리나라의 57개 지점에 대한 CSEOF기법을 이용하여 기후 시나리오를 생산하였다. 이 자료는 서울시에 대하여 하나의 지점밖에 존재하지 않아, 서울시내의 지역별 미래 기후전망에는 문제가 있었으므로, Delta method라는 기법을 이용하여 서울 및 인근지역의 AWS 35개 지점에 대하여 미래 기후시나리오를 생산하였다. 통계적 상세화 결과, 13개 GCM의 기온변화는 전체평균 약 3.1도 상승하였고, 겨울과 여름철의 변화폭이 가장 크며, 모델의 불확실성 또한 겨울과 여름에 가장 큰 특징을 가지고 있다. 강수량의 경우 MME에서는 약간의 상승은 나타나고 있었지만 모델간의 불확실성은 여름철에 크게 나타나고 있었다. 역학적 및 통계적 상세화 기후 시나리오(ECHO-G/S, A2)를 비교 분석한 결과, 기온은 역학적 상세화 결과가 약간 크게 나타났으며, 전체적으로 유사한 패턴을 보이고 있었다. 강수량 또한 역학적 상세화 결과가 크게 나타나고 있었다. 역학적 및 통계적 상세화 결과는 S1의 경우 유사한 특징을 보이고 있었지만 S3로 갈수록 차이가 크게 나타나고 있었다.

  • PDF

A Statistical Downscaling of Climate Change Scenarios Using Deep Convolutional Neural Networks (합성곱 신경망(CNN)기반 한반도 지역 대상 기후 변화 시나리오의 통계학적 상세화 기법 개발)

  • Kim, Yun-Sung;Uranchimeg, Sumiya;Yu, Jae-Ung;Cho, Hemie;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.326-326
    • /
    • 2022
  • 기후 변화 시나리오는 온실가스, 에어로졸, 토지이용 변화 등 인위적인 원인으로 발생한 복사강제력 변화를 지구시스템 모델에 적용하여 산출한 미래 기후 전망정보(기온, 강수량, 바람, 습도 등)를 생산하는데 활용된다. 또한, 미래에 기후변화로 인한 영향을 평가하고 피해를 최소화하는데 활용할 수 있는 선제적인 정보로 활용된다. GCM과 RCM은 구조 및 모수화 과정, 불확실성 등의 한계로 인하여 상대적으로 큰 시공간적 규모를 가지며, 실제 관측된 기상인자들을 재현하는데 시공간적 차이 즉 편의(bias)가 발생하며. 실제 관측된 기상인자의 시간적 변화 특성을 재현하지 못하는 문제점을 내재하고 있는 것으로 보고되고 있다. 이러한 점에서 기후모델에서 생산된 정보를 수문학적으로 적용하기 위해서는 시공간적 상세화와 편의 보정은 필수적이다. 본 연구에서는 관측자료를 사용하여 재해석 자료를 편의보정 한 뒤. 기후 변화 시나리오를 합성곱 신경망(CNN)을 기반으로 상세화 과정을 진행하여 고해상도 자료를 생산하였으며, CNN 기반 상세화 기법 적용성은 지상 관측자료 대상으로 평가하였다.

  • PDF

Study on Change of Urban Flood Runoff using Expansion of Climate Change Scenarios (기후변화 시나리오의 확장을 통한 도시홍수유출 변화 연구)

  • Park, Heeseong;Jung, GunHui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.403-403
    • /
    • 2017
  • 기후변화에 따라 도시의 홍수유출이 어떻게 변화할 것인가를 살펴보는 것은 안전한 도시를 설계하는데 매우 중요하다. 이에 본 연구에서는 기후변화 시나리오에 따른 도시홍수유출의 변화를 살펴보고자 하였다. 하지만 기후변화 시나리오 자료는 물리적인 계산량의 한계로 인해 월이나 일 단위의 결과를 갖고 있어 도시홍수유출의 모의에 직접 적용하기 곤란하다. 이를 위해 시단위까지 자료의 상세화가 필요한데 본 연구에서는 기존에 개발된 "K번째 최근접 표본 재추출 방법에 의한 일 강우량의 추계학적 분해" 방법을 기상청의 RCP 기후변화 시나리오에 적용하였다. 이와 같이 추계학적인 방법을 이용해 강우를 시간단위로 분해하면 일단위 강우량은 보존되면서 다양한 시단위의 강우 시나리오를 얻을 수 있으므로 기후변화 시나리오 자료를 시단위로 상세화 하는 동시에 동일한 일단위 강우량을 갖는 많은 시단위 자료를 생성해 낼 수 있다. 본 연구에서는 이러한 방법을 통해 확장된 기후변화 시나리오 자료를 이용해 호우사상을 추출하고 SWMM을 이용하여 도시 홍수유출을 모의함으로써 많은 가상의 홍수유출 자료를 확보할 수 있으며, 이를 통계적으로 분석하여 각 기후변화 시나리오에 따른 도시홍수유출의 변화를 살펴보았다.

  • PDF

Development of Hourly Rainfall Simulation Technique Using RCP Scenario (RCP 시나리오를 활용한 시간강우량 자료 생성기법 개발)

  • Kim, Jin Young;Kim, Jang-Gyeong;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.6-6
    • /
    • 2015
  • 본 연구에서는 일단위로 제공되는 RCP 시나리오를 Poisson Cluster 기법을 활용하여 시간강우량으로 생성할 수 있는 모형을 개발하는데 목적이 있다. 일반적으로 시간단위 강우량의 경우 수자원 설계 또는 강우-유출 분석시 가장 기본이 되는 입력 자료로서 이에 대한 모의기법 확립이 기후변화에 따른 수문학적 영향 검토의 신뢰성을 결정짓는 핵심 요소이다. 그러나 국내 다수 연구를 살펴보면 기후변화 시나리오의 시 공간적 상세화 기법을 활용한 일단위 상세화 연구는 다수 존재하였지만, 일단이 이하의 시간적 규모에 대한 연구는 미진한 실정이다. 이러한 이유로 본 연구에서는 시단위 상세화 기법시 일반적으로 사용되고 있는 Poisson Cluster 기법을 활용하여 국내 실정에 맞는 시단위 상세화 기법을 개발고자 한다. 본 연구에서는 RCP 시나리오를 시단위강우량 자료로 생성하기 위해 다음과 같은 연구를 진행하였다. 첫째, 본 연구에서는 기상청에서 제공하는 RCP($27km{\times}27km$) 시나리오를 활용하였으며, 1km 격자 단위로 시공간적 상세화 기법을 수행하였다. 둘째, 시공간적으로 상세화 된 자료를 Poisson Cluster 기법을 기반으로 시간단위 자료를 생성하였으며, 기본적인 통계치(평균, 분산, 왜곡도 등)를 활용하여 관측값과 비교 분석 하였다. 마지막으로, 미래 기후변화 시나리오를 동일한 방법으로 시간단위 자료를 생성하고 연 최대값을 추출하여 빈도해석을 통해 미래 극치 확률강우량을 평가하였다. 본 연구 결과 시간단위 자료를 제공함으로써 미래 수자원 설계 및 영향평가를 효과적으로 수행할 것으로 기대되며, 수문기상변화 예측을 위한 신뢰성 있는 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

A Study on the Analysis of Long-term Climate Change using Spatio-temporal Rainfall Data in Extremely High Resolution (시공간적 초상세 강우자료를 이용한 장기 기후변화 분석연구)

  • Kim, Min Seok;Kang, Ho Yeong;Lee, Jung Hwan;Moon, Young Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.455-455
    • /
    • 2017
  • 최근 기후변화로 인한 도시홍수 피해가 증가하고 있다. 이에 따라 본 연구에서는 기상청에서 제공하는 HadGEM3-RA의 한반도(12.5km) 기후변화 RCP 4.5 및 RCP 8.5시나리오에 대해 편의보정 및 시간상세화를 실시하여 기후변화를 고려한 수문분석을 하였다. 기후변화 시나리오의 편의보정은 Gamma분포를 이용한 모수적 분위사상법과 관측자료의 누가확률분포를 이용하는 비모수적 분위사상법으로 수행하였으며, 관측된 분 단위 강우자료를 기반으로 기후변화 시나리오 미래기간에 대해 시간상세화를 실시하였다. 또한, 도림천유역을 중심으로 기후변화 시나리오 미래기간의 확률강우량과 설계홍수량을 산정하였다. 본 연구에 결과는 수문분석을 위한 기후변화 시나리오 시간상세화 방안에 크게 기여 할 것으로 판단된다.

  • PDF

A Development of Downscaling Model for Sub-daily Rainfall Based on Bayesian Copula model (Bayesian Copula 모형을 활용한 시간단위 강우량 상세화 기법 모형 개발)

  • Kim, Jin-Young;So, Byung-Jin;Kwon, Duk-Soon;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.229-229
    • /
    • 2016
  • 현재 국내외에서 제공되고 있는 기후변화 시나리오 자료의 경우 일단위로 제공되고 있다. 그러나 수자원 설계 및 계획 시 중요한 입력자료 중 하나는 시간단위 강우 자료이다. 이러한 시간단위 자료는 강우-유추 분석, 댐 설계 및 위험도 분석에 있어 중요한 입력 변수중 하나이므로 기후변화 시나리오에 따른 영향을 평가하기 위해선 신뢰성 있는 상세화 기법이 필요하다. 국내외에서는 일단위에서 일단위로 상세화 하는 기법, 또는 공간상세화 기법 연구는 상당히 진행된바 있는 반면, 시간단위 상세화 기법 연구는 일단위 연구에 비해 상대적으로 미진한 실정이다. 즉 일단위 상세화 기법의 경우 Weather generator, Weather typing 등 다양한 기법이 존재하고 이를 활용한 연구사례가 많지만, 시간단위 상세화 기법의 Poisson 기법을 활용한 사례가 다수 존재하였다. 이러한 이유로 본 연구에서는 기후변화 시나리오에 따른 영향을 평가하기 위해 Bayesian 기법을 도입하여 신뢰성 있는 시간단위 강우량을 생성할 수 있는 모형을 개발하였으며, 연대별로 산정된 결과는 빈도해석을 통해 미래 확률강우량을 제시하였다. 본 연구에서 제안하고자 하는 Bayesian Copula 모형은 기존 주변확률분포(marginal distribution) 매개변수와 Copula 매개변수 추정시 각각 다른 기법을 활용하여 추정하며, 각각 모형에서 발생하는 불확실성은 추정하지 못하는 반면, Bayesian Copula 모형의 경우 매개변수의 사후분포를 정량적으로 제시할 수 있으며, 추정되는 확률강우량 역시 불확실성을 정량적으로 산정할 수 있는 장점을 확인할 수 있었다.

  • PDF