• Title/Summary/Keyword: 기후경제 모형

Search Result 181, Processing Time 0.027 seconds

Green Productivity Analysis of the Logistics Industry for the Global Competitiveness (물류산업의 녹색생산성 평가와 국제경쟁력 강화방안)

  • Choi, Yong-Rok
    • International Commerce and Information Review
    • /
    • v.14 no.4
    • /
    • pp.89-107
    • /
    • 2012
  • Recently, the successful appointment of the general directorate of GCF (Green Climate Fund) in Songdo of Korea made a great history for the golden triangle with GGGI (global Green Growth Institute) and GTC (Green Technology Center). Now, Korea became the Mecca for the global green growth and it gave a great opportunity foe the Korea to lead the global economy in the future. However, to successfully manage the GCF, the Korean government should show their willingness as well as the readiness for the green prowth and green productivity. It is really hard for the Korea, since it takes the second rank for the growth rate of carbon dioxide emission in the world. To overcome this shameful status, it should make the best effort to promote the green productivity, especially in a field of logistics industry, because it takes 21% of global CO2 emission, the second largest portion. The research aims to systematically introduce the Global Malmquist-Luenberger Index (GML) and to evaluate the logistics industry of Korea based on the GML approach. It concludes the innovative technology is utmost important to improve the green productivity of the logistics industry and thus the Korean government should make more aggressive role to fill this missing link in the innovation network.

  • PDF

Development of a new armor unit against high waves (고파랑 대응 신형 소파블록 개발)

  • Park, Young Hyun;Youn, Daeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.737-743
    • /
    • 2016
  • Coastal hazards such as high waves are expected to increase due to global climate change. Therefore, we investigated new armor unit structures for disaster prevention. Recently, a concrete caisson has been used in many breakwaters against high waves in South Korea, but the demand for concrete armor unit has increased due to the high cost and many installation requirements. Though many new armor units have been developed over the world since Tetrapod in 1950, few have been used due to lack of systematical development. The representative armor units in current use have many advantages, but they cannot be applied to waves higher than 8 m. One of the new armor units developed by the design guide based on recent trend and hydraulic model experiments were conducted. The new armor unit was developed as a single layer due to cost effectiveness. However, the thickness is close to 1.5 times by overlapping the alphabet A and V. It showed higher overtopping compared to a double layer because of the thickness and the high packing density. It has a high interlocking vertically but low horizontally. It shows good stability at 9 m in model testing.

A Multidisciplinary Research Framework for Green Car Industry (그린카 산업의 학제적 분석 방안에 관한 연구)

  • Choi, Jinho;Chung, Sunyang;Park, Kyungbae;Jang, Dae-Chul;Cho, Hyeongrye;Kang, SeungGyu
    • Journal of Technology Innovation
    • /
    • v.22 no.3
    • /
    • pp.101-133
    • /
    • 2014
  • Climate change and low-carbon consumer movement is demanding proper response around the world while rising oil price increases consumers' needs for green car. As a preliminary study to establish an industrial platform for green car and bring out corporate strategies, this article aims to propose an academic research framework by using various methodologies including conceptual/mathematical modeling, system dynamics, and ABM from different angles. First, an analysis framework for the industrial platform was introduced to analyze green car cases, required elements were proposed, and econometrics was applied to build a basic model related to green platform (two-sided market). Also, to analyze from a dynamic perspective, a system dynamics model was applied to green car environment to build a system dynamics analysis model that is applicable to particular green car industry analysis. Lastly, an agent based model was used to study the way to activate the hybrid car market in Korea from individual consumers' perspective. Based on the result, vehicle policies that are either being enforced or planned to be enforced in the Korean HEV market can be analyzed.

Habitat characteristics and prediction of potential distribution according to climate change for Macromia daimoji Okumura, 1949 (Odonata: Macromiidae) (노란잔산잠자리(Macromia daimojiOkumura, 1949)의 서식지 특성 및 기후변화에 따른 잠재적 분포 예측)

  • Soon Jik Kwon;Hyeok Yeong Kwon;In Chul Hwang;Chang Su Lee;Tae Geun Kim;Jae Heung Park;Yung Chul Jun
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.21-31
    • /
    • 2024
  • Macromia daimoji Okumura, 1949 was designated as an endangered species and also categorized as Class II Endangered wildlife on the International Union for Conservation of Nature (IUCN) Red List in Korea. The spatial distribution of this species ranged within a region delimited by northern latitude from Sacheon-si(35.1°) to Yeoncheon-gun(38.0°) and eastern longitude from Yeoncheon-gun(126.8°) to Yangsan-si(128.9°). They generally prefer microhabitats such as slowly flowing littoral zones of streams, alluvial stream islands and temporarily formed puddles in the sand-based lowland streams. The objectives of this study were to analyze the similarity of benthic macroinvertebrate communities in M. daimoji habitats, to predict the current potential distribution patterns as well as the changes of distribution ranges under global climate change circumstances. Data was collected both from the Global Biodiversity Information Facility (GBIF) and by field surveys from April 2009 to September 2022. We adopted MaxEnt model to predict the current and future potential distribution for M. daimoji using downloaded 19 variables from the WorldClim database. The differences of benthic macroinvertebrate assemblages in the mainstream of Nakdonggang were smaller than those in its tributaries and the other streams, based on the surrounding environments and stream sizes. MaxEnt model presented that potential distribution displayed high inhabiting probability in Nakdonggang and its tributaries. Applying to the future scenarios by Intergovernmental Panel on Climate Change (IPCC), SSP1 scenario was predicted to expand in a wide area and SSP5 scenario in a narrow area, comparing with current potential distribution. M. daimoji is not only directly threatened by physical disturbances (e.g. river development activities) but also vulnerable to rapidly changing climate circumstances. Therefore, it is necessary to monitor the habitat environments and establish conservation strategies for preserving population of M. daimoji.

Evaluation of the Spatial Distribution of Water Yield Service based on Precipitation and Population (강수량 및 인구인자를 반영한 수원함양서비스의 공간분포 평가)

  • CHO, Heun-Woo;SONG, Chol-Ho;JEON, Seong-Woo;KIM, Joon-Soon;LEE, Woo-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.1-15
    • /
    • 2016
  • The study of ecosystem service assessment has been actively researched and developed from Millennium Ecosystem Assessment(MA) and The Economics of Ecosystems and Biodiversity(TEEB). However, current assessments are limited to monetary assessments of ecosystem function and do not account for the effects of environmental factors and socioeconomic status. This study proposes methods to evaluate ecosystem service based on environmental and socioeconomic factors. The study assesses water yield function through the water yield model in InVEST Tool, and evaluates the overall ecosystem service of water yield as reflected by the amount of precipitation and population of the area. Results show that a difference exists between spatial distributions of the ecosystem function of water yield derived from natural conditions such as land cover and soil, and the spatial distribution of the ecosystem service that accounts for climate and socioeconomic factors. The value of ecosystem service increases for an area of higher population and lower precipitation with similar water yield. Thus, the ecosystem service of water yield should be evaluated not only by the water yield function, but also by climate and socioeconomic factors. The evaluation process described for this study should also be applicable to the evaluation of ecological services in other sectors.

Evaluation Methodology of Greenhouse Gas On-Line Monitoring on Freeway (고속도로 구간의 온실가스 On-Line 모니터링 산정방법)

  • Lee, Soong-bong;Chang, Hyun-ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.92-104
    • /
    • 2017
  • Previous management for speed in road traffic system was aimed only to the improvement of mobility and safety. However, consideration for the aspect of environment and energy consumption efficiency was valued less than the former ones. Nevertheless, economical damage scope caused by climate change has been increasing and it is estimated that environmental value will be increased because of the change of external circumstances. In addition, policy for reducing carbon emission in transportation system was assessed as insufficient in improving the condition of traffic road since it only focused on the transition of private vehicle into public transportation and development of eco-friendly car. Now it is the time to prepare for the adaptation strategy and precaution for the increased number of private vehicle in Korea. For this, paradigm shift in traffic operation which includes the policy not only about the mobility but also about caring environment would be needed. It is needed to be able to monitor the actual amount of greenhouse gas in real time to reduce the amount of emitted greenhouse gas in the aspect of traffic management. In this research, a methodology which can build on-line greenhouse gas emission monitoring system by using real time traffic data and predicting the circumstance in next 5 minutes was suggested.

Study of the WTP Estimation for Introduction of Medium-sized Low Floor Electric Bus (중형 저상전기버스 도입에 따른 지불용의액 추정 연구)

  • Kim, Kyung Hyun;Park, Sangmin;Park, Sungho;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.17-30
    • /
    • 2018
  • Currently, the global climate change response paradigm has been changed to a universal response system in which all nations, not the developed countries, participate. Korea has also set a target of 25.9 million tons of transportation greenhouse gas reduction targets by 2030. Korean society is expected to enter the super aging society in 2026. In this study, to reduce the greenhouse gas emissions in public transport and to improve the convenience of transportation vulnerable, we estimate the willingness to pay(WTP) and social benefits assuming that the existing feeder buses are replaced with medium-sized low floor electric buses. To this end, survey was conducted on bus users in the metropolitan area and WTP was estimated by using contingent valuation method(CVM), which is one of the non-market value evaluation methods. As a result of estimation of WTP, the average WTP is 51.4 (won / time person), estimated the economic benefits were 50 million won on weekdays and 40 million won on weekends in Gyeonggi Province in 2014.

Assessment of water use vulnerability in the unit watersheds using TOPSIS approach with subjective and objective weights (주관적·객관적 가중치를 활용한 TOPSIS 기반 단위유역별 물이용 취약성 평가)

  • Park, Hye Sun;Kim, Jeong Bin;Um, Myoung-Jin;Kim, Yeonjoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.685-692
    • /
    • 2016
  • This study aimed to develop the indicator-based approach to assess water use vulnerability in watersheds and applied to the unit watershed within the Han River watershed. Vulnerability indices were comprised of three sub-components (exposure, sensitivity, adaptive capacity) with respect to water use. The indicators were made up of 16 water use indicators. Then we estimated vulnerability indices using the Technique for Order of Preference by Similarity to Ideal Solution approach (TOPSIS). We collected environmental and socio-economic data from national statistics database, and used them for simulated results by the Soil and Water Assessment Tool (SWAT) model. For estimating the weighted values for each indicator, expert surveys for subjective weight and data-based Shannon's entropy method for objective weight were utilized. With comparing the vulnerability ranks and analyzing rank correlation between two methods, we evaluated the vulnerabilities for the Han River watershed. For water use, vulnerable watersheds showed high water use and the water leakage ratio. The indices from both weighting methods showed similar spatial distribution in general. Such results suggests that the approach to consider different weighting methods would be important for reliably assessing the water use vulnerability in watersheds.

Analysis of Risk Classification on the Urban Flood Damage in Changwon city (창원시 용도지역별 침수 피해에 따른 위험등급화 분석)

  • Park, Ki-Yong;Jeong, Jin-Ho;Jeon, Won-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.685-693
    • /
    • 2017
  • This study aims to effectively respond to urban local rainstorms by classifying the risk against flood damage for each use district. The risk classification is based on sensitivity analysis of the socio-economic damage caused by local rainstorms in Changwon city, Korea by a Fuzzy model using data, such as the districts that provide institutional bases for land use, land prices, which estimate the property values, and floor area ratios, which measures the density and areas of flood damage. The analysis result indicated that flood damage in five districts of Changwon (Masan happo-gu, Masan Hoewon-gu, Sungsan-gu, Euichang-gu, and Jinhae-gu) is highest in the order of commercial areas, residential areas, industrial areas, and forests, which was attributed to high land price and floor area ratio of commercial areas. On the other hand, specific analysis in Masan Hoewon-gu and Sungsan-gu was different from the previous result, indicating that the risk against flood damage may vary according to the districts depending on their local conditions. The analysis from this study can be applied to future urban planning and be used as a guideline to estimate the potential flood damage. Overall, this study is meaningful in that it proposes an effective management of land use as a new resolution to mitigate of urban flood damage within a broader perspective of climate change and urbanization.

Analysis of Hydraulic Characteristics in River Using 3D Geospatial Information (3차원 지형공간정보를 이용한 하천수리특성 분석)

  • Kim, Si-Chul;Lee, Jong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.33-33
    • /
    • 2021
  • 예측하기 어려운 복잡한 기후 변화로 인해 수자원 관리측면에서 다양한 방법을 도입하여 해결할 수 있는 방안이 국가적 주요 관심사로 다루어지고 있다. 따라서 투입인력과 소요시간 절감, 장비와 인력진입 불가지역에 대한 정보획득, 높은 공간해상도, 항공측량 대비 높은 경제성 등 다양한 장점의 드론을 이용한 하천지형 특성별 수리특성 분석방안이 필요하다. 본 연구에서는 성연천 하류부지역을 대상으로 위성항법시스템(Global Navigation Satellite System, GNSS) 측량 지형성과와 드론측량(Drone) 지형성과를 지상에 설치된 CHP(Check Point) 좌표 값을 확인하여 두 지형의 정확도를 비교하였으며 HEC-RAS 모형을 이용하여 빈도별 수리특성을 비교 산정하였다. 본 연구는 성연천 하류 480m구간을 선정하고 GNSS를 이용한 실측지형자료와 GCP(Ground Control Point)를 얻기 위해 정확도 검증을 실시하였으며 위성항법시스템(GNSS) 측량과 DRONE RGB측량의 CHP(Check Point) 오차를 비교하여 정확도를 검증하였다. 오차 값이 확인된 위성항법시스템(GNSS)을 이용하여 가상기준점을 선정하고 RTK 모바일스테이션을 설치하여 DRONE LIDAR측량을 통해 지형자료를 취득하였으며 얻어진 지형자료를 HEC-RAS를 통해 입력 후 성연천 하천기본계획에 제시되어진 조도계수와 빈도별 홍수위를 적용하여 연구구간 480m에 대해 100년 빈도의 결과 값을 비교 검토하였다. 100년 빈도 계획 홍수량 조건의 하상과 한계수위의 차에서 위성항법시스템(GNSS) 측량 지형자료를 기준으로 평균수위 측정오차는 드론 RGB 측량 지형자료 0.460m, 드론 LIDAR 측량 지형자료 0.260m의 결과를 얻었으며 동일 조건 흐름하의 평균유속에서 위성항법시스템(GNSS) 측량 지형자료를 기준으로 평균유속 측정오차는 드론 RGB 측량 지형자료 0.40m/s, 드론 LIDAR 측량 지형자료 0.36m/s의 결과를 얻었다. 통수 단면적의 비교 결과는 위성항법시스템(GNSS) 측량 지형자료를 기준으로 드론 RGB 측량 지형자료 전체 단면의 평균오차는 20.20m2, 드론 LIDAR 측량 지형자료 전체 단면의 평균오차는 21.682의 결과를 얻었으며 이상에서와 같이 홍수위와 평균유속, 통수 단면적의 측정오차 비교 결과를 종합할 때 통수 단면적 측정결과는 위성항법시스템(GNSS) 측량과 드론 RGB 측량의 차이가 적었으나 계획 홍수량 조건의 하상과 한계수위 차이와 동일조건 흐름하의 평균유속에서 위성항법시스템(GNSS) 측량과 드론 LIDAR 측량의 차이가 적은 것으로 나타났다. 그리고 통수용량(capacity)(m3) 비교에서는 위성항법시스템(GNSS) 측량을 기준으로 드론 RGB 측량은 약 7644m3, 드론 LIDAR 측량은 약 7547m3의 차이를 보여 드론 LIDAR를 이용한 결과가 가장 정확한 측정방법으로 추천할 수 있음을 확인하였다.

  • PDF