• 제목/요약/키워드: 기화분무

검색결과 27건 처리시간 0.04초

가스터빈 기화기의 분무 가시화 연구 (Spray Visualization of the Gas Turbine Vaporizer)

  • 조성필;주미리;최성만;이동호
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.130-136
    • /
    • 2019
  • Spray visualization of a vaporizer fuel injection system of a micro turbo jet engine was experimentally studied. The fuel heating by combustion was simulated by the high pressure steam generator and combustor inlet air from the centrifugal compressor was simulated by compressed air stored in the high pressure air tank. Spray visualization was performed with single vaporizer, and then six vaporizers which are same number of micro turbojet engine were used. As a results, the spray characteristics of the vaporizer were understood with pressure difference of the combustor inlet air and the fuel supply pressure. Spray angles with three types of vaporizer configuration were measured. In the results, guide vane configuration has a wider spray angle than the straight tube and smooth curve tube with a swirler, so it is expected that the fuel will be effectively distributed inside the combustor flame tube.

가솔린 연료의 기화율 변화에 따른 연소 특성에 관한 기초 연구 (A study on the combustion characteristics according to evaporation rate of gasoline)

  • 이기형;이창식;신광수;조행묵
    • 한국분무공학회지
    • /
    • 제1권3호
    • /
    • pp.29-36
    • /
    • 1996
  • The present study systematically investigates the effect of evaporation rate on the combustion characteristics and the flame stabilization in a gasoline engine. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaparating a gasoline fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion duration were deteriorated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for gasoline fuel was strongly influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF

오리멀전의 플래쉬 분무 연소특성에 관한 연구 (A Study on Flash Spary Combustion Characteristics of Orimulsion)

  • 신명철;류태우;김세원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.99-103
    • /
    • 2005
  • This study focused on the use of orimulsion in industrial combustion systems. Orimulsion is a bitumen-in-water emulsified fuel, which contains a thirty percent water. Orimulsion has relatively high levels of sulfur and nitrogen compared to many fuel oils, and has been the subject of much debate regarding the environmental impacts of its use. The goal of this research is to analyse the effect of flash spray combustion characteristics of orimulsion on NOx and particulate material reduction. For the flash spray of orimulsion, it is heated by $150^{\circ}C$. The effects of fuel heating temperatures on NOx and particulate material emissions were investigated experimentally. As the fuel temperature was increased, NOx and particulate material concentrations in flue gas were decreased.

  • PDF

고온고속류에서 기화를 고려한 연료액적의 분열(Breakup)기구 해석에 관한 연구 (A Study on Analysis of Breakup Mechanism of Vaporizing Fuel Droplet in High Temperature and Velocity Air Stream)

  • 김관철;황상순
    • 한국분무공학회지
    • /
    • 제3권3호
    • /
    • pp.1-13
    • /
    • 1998
  • In this study, an experimental study was performed to investigate the breakup mechanism of vaporizing droplet. A well-controlled experimental apparatus was used to study breakup mechanisms of a monodisperse stream of drops injected into a transverse high temperature and velocity air stream. The experiments gave information$ about the microscopic structure of the liquid drop breakup process, drop breakup regimes, and drop trajectories in high temperature flow region. The breakup time, drop acceleration and wavelength of surface instability wave were measured from a high-magnification and double spark photography. The two instability theories, i.e., Kelvin-Helmholtz instability and Rayleigh-Taylor instability, were estimated by comparing the calculated data with the measurements. The results showed that the breakup time in high temperature flow condition is shortened because the surface tension is decreased by the increase of gas temperature.

  • PDF

도데케인 연료액적의 초임계 상태 기화 특성 (Vaporization Characteristics of Dodecane Fuel Droplet in Supercritical Condition)

  • 고정빈;이관형;구자예;전창수;문희장
    • 한국분무공학회지
    • /
    • 제9권3호
    • /
    • pp.8-14
    • /
    • 2004
  • Characteristics of droplet vaporization at high ambient pressures and temperatures which are supercritical conditions is studied numerically by formulating one dimensional vaporization model in liquid dodecane and air. Modified Soave-Redlich-Kwong state equation is used to condider real gas effect. Non-ideal behavior of properties at near critical and supercritical conditions is considered in the high pressure condition. Characteristic spatial distribution of properties with various conditions of pressure and temperature is evaluated in order to understand vaporizing evolution.

  • PDF

메탄올 혼합 연료의 기화율 변화에 따른 연소특성에 관한 실험적 연구 (A Study on the Combustion Characteristics according to Evaporation rate of Methanol - Blended Fuel)

  • 조행묵
    • 한국분무공학회지
    • /
    • 제2권2호
    • /
    • pp.24-34
    • /
    • 1997
  • This paper describes the investigation of combustion characteristics of gasoline-methanol blend in constant volume combustion chamber. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaporating a blend fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deteriorated by decreasing surrounding temperature of fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deter orated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for methanol blend fuel was influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF

고온 고압 유동장에서 햅탄 액적의 기화 특성 (Characteristics of Heptane Droplet Vaporization in High-Pressure and Temperature Flow Field)

  • 고정빈;구자예
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.83-89
    • /
    • 2004
  • Vaporization characteristics of a liquid heptane droplet in high-pressure and temperature flow field are numerically studied. Variable thermodynamic and transport properties and high-pressure effects are taken into account in order to consider real gas effects. Droplet Vaporization in convective environments was investigated on the basis of droplet vaporization in quiescent and convective environment. In quiescent environments, droplet lifetime is directly proportional to pressure at the subcritical temperature range but it is inversely proportional to pressure at the supercritical temperature range. In convective environment, droplet deformation becomes stronger by increasing Reynolds number due to increase of velocity while droplet deformation is relatively weak at a higher pressure for the same Reynolds number cases.

  • PDF

PLIF 기법을 이용한 액체 로켓용 F-O-O-F 인젝터의 혼합특성 연구

  • 정기훈;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2000년도 제14회 학술강연논문집
    • /
    • pp.2-2
    • /
    • 2000
  • 액체연료를 사용하는 엔진의 인젝터에 대한 연구는 연소효율에 중대한 영향을 미치는 분무 액적의 크기 및 분포 특성 연구에 초점을 두어왔다. 그러나 액체 로켓 엔진은 고온, 고압의 연소실 내에서 액체상태의 연료 및 산화제 액적이 매우 빠르게 기화되기 때문에, 미립화 특성 보다는 연료와 산화제의 혼합특성이 연소효율을 결정하는 변수로 작용하게 된다. 또한 분사된 액체 추진제는 미립화 단계 이전에 기화되어 초기 화염을 형성하므로, 분사 직후의 연료/산화제의 혼합과정을 이해하는 것은 상당히 중요하다.

  • PDF

액상분사식 LPG 연료공급방식의 아이싱현상에 관한 연구 (Investigation of Icing Phenomenon in Liquid Phase LPG Injection System)

  • 김창업;오승묵;강건용
    • 한국분무공학회지
    • /
    • 제8권1호
    • /
    • pp.9-15
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system is considered as one of the next generation fuel supply systems for LPG, vehicles, since it can accomplish the higher power, higher efficiency, and lower emission characteristics than the existing mixer type fuel supply system. However, during the injection of liquid LPG fuel into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. A problem is that the moisture in the air freezes around the outlet of a nozzle, which is called icing Phenomenon. It may cause damage to the outlet nozzle of an injector. The frozen ice deposit detached from the nozzle also may cause a considerable damage to the inlet valve or valve seat. In this work, the experimental investigation of the icing phenomenon was carried out. The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of the air temperature in the inlet duct. Also, it was observed that the icing occurs first in the inlet of a nozzle, and grows considerably at the upper part of the nozzle inlet and the opposite side of the nozzle entrance. An LPG fuel, mainly consisting of butane, has lower latent heat of vaporization than that of propane, which is an advantage in controlling the icing phenomenon.

  • PDF