Journal of the Korean Society of Food Science and Nutrition
/
v.40
no.4
/
pp.613-617
/
2011
This study was conducted to compare the quality of the brown rice (BR) and milled rice (MR) during storage. To assess quality, BR and MR were analysed by their fat acidity and flavor pattern using a SMart Nose$^{(R)}$. BR was stored for 30 days at $30^{\circ}C$, and analysed after 5, 15, 20, and 30 days of storage. MR produced in 2005, 2009, and 2010 were also tested. The fat acidity of both rice groups was increased with extended storage and the fat acidity of BR was more rapidly increased than that of MR in general. The flavor patterns from the SMart Nose$^{(R)}$ results were analyzed by the principal component analysis (PCA). The major groups of atomic mass unit (amu) for good discrimination contribution were from 41 to 85 amus. The PCA1 and PCA2 of BR were 95.64% and 2.78%, respectively when the samples were categorized by storage period. The PCA1 and PCA2 of MR were 81.18% and 13.85%, respectively when the samples were compared by production year. Both rice groups could be practically differentiated into flavor patterns by volatile properties for storage period. With regard to the correlation between fat acidity and flavor pattern, we could find that increasing storage period increased fat acidity value and changed flavor pattern from SMart Nose$^{(R)}$. Accordingly, SMart Nose$^{(R)}$ could be successfully used for easy screening and quality evaluation of stored rice.
최근 동작 및 행동 인식에 대한 연구가 활발하다. 특히, 센서가 소형화되고 저렴해지면서 그 활용을 위한 관심이 증가하고 있다. 기존의 많은 행동 인식 연구에서 사용되어 온 정적 분류 기술 기반 동작 인식 방법은 연속적인 데이터 분류 기술에 비해 유연성 및 활용성이 부족할 수 있다. 본 논문에서는 연속적인 데이터의 패턴 분류 및 인식에 효과적인 확률적 추론 기법인 은닉 마르코프 모델(Hidden Markov Model)과 사전 지식 없이도 자동 학습이 가능하며 의미 깊은 궤적 패턴을 클러스터링하고 효과적인 양자화가 가능한 자기구성지도(Self Organizing Map)를 이용한 동작 인식 기술을 소개한다. 또한, 그 유용성을 입증하기 위해 실제 가속도 센서를 이용하여 다양한 동작에 대한 데이터를 수집하고 분류 성능을 분석 및 평가한다. 실험에서는 실제 가속도 센서를 통해 수집된 숫자를 그리는 동작의 성능 평가 결과를 보이고, 행동 인식기 별 성능과 전체 인식기별 성능을 비교한다.
Proceedings of the Korea Information Processing Society Conference
/
2001.10b
/
pp.989-992
/
2001
인터넷의 지속적인 보급/발전과 더불어, 네트워크 상에서의 침입시도는 해가 지날수록 기하급수적으로 증가되고, 그 기법 또한 다변화되고 있다. 이는 침입탐지시스템의 적용환경에도 많은 영향을 끼치게 되었다. 일반적인 네트워크 기반 침입탐지시스템은 네트워크 디바이스를 통해 유입되는 패킷에 대해 Signature 기반 침입탐지 모듈을 통하여 침입을 탐지하게 된다. 대게의 경우 새로운 침입탐지 패턴이 생성되었을 경우, 사용자에 의해 추가되거나 또는 소스코드의 재컴파일을 통하여 시스템이 재구동되기도 한다. 본 논문이 제시하는 바는 이에 반해 AS 내에 존재하는 네트워크의 유입점인 게이트웨이 장치에 침입탐지 시스템을 설치하며, 이를 보안정책서버에 의해 정의된 정책에 의해 침입탐지 및 게이트웨이 장치로서 동작하게 한다. 이를 통해 보안정책서버에 추가되는 침입탐지 패턴 등의 정책정보가 각 침입탐지시스템에 실시간으로 반영되어 처리된다.
Hot wall epitaxy법에 의하여 GaAs(100)aus 위에 ZnS-ZnSe 초격자를 성장하였다. ZnS-ZnSe 초격자의 주기는 x-선 회절 패턴에 의하여 확인되었고 이것은 변형을 고려하고 계산된 이론적인 패턴과 비교되었다. 경계면에 평행한 ZnS와 ZnSe의 변형의 비는 ZnSe에 대하여 ZnS의 두께기 증가할수록 감 소되었다. ZnS-ZnSe 초격자의 photoluminescence(PL)는 고에너지 영역의 예리한 스펙트럼과 저에너지 영역의 폭이 넓은 스펙트럼으로 구성되어있다. PL의 광자에너지는 Kronig-Penney 모델을 사용하여 계 산된 이론적인 에너지 값과 비교한 결과 type I의 초격자임을 알았다.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2003.07a
/
pp.195-198
/
2003
본 연구에서는 MILC 및 FALC를 도핑 타입에 따른 온도별 패턴별 인가 전압별로 진행하여 현미경 및 FESEM 관찰을 함으로써 그 메커니즘을 규명하고자 하였다. LPCVD를 이용하여 $1000\;{\AA}$ a-Si 을 glass에 입힌 후 photolithography법 또는 Hard Mask법으로 Ni $200\;{\AA}$ 을 선택적으로 증착하였으며 Pt 전극을 Sputtering법으로 제작하였다. $33\;{\sim}\;200\;V/cm$의 전기장 하에서 MILC 속도가 2배 정도 증가되는 현상이 관찰되었으며 또한 인접패턴에 의해 FALC 속도가 영향을 받는 현상이 관찰되었다. 또한 전자가 움직이는 방향으로 MILC 선단영역 전후에 Void가 발생하는 영역이 존재함을 발견하였다. FESEM 분석을 통하여 FALC 영역 및 Void 영역을 관찰한 결과 도핑 종류에 따라 결정화 양상이 다른 것이 관찰되었으며 Void 분석결과 Charged vacancy가 어닐링시 결집되어 나타나는 것으로 분석할 수 있었다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.153-156
/
2000
본문에서는 예측형 회귀신경망과 HMM의 하이브리드 네트워크인 회귀신경망 예측 HMM을 구성하였다. 회귀신경망 예측 HMM은 예측형 회귀신경망을 HMM의 각 상태마다 예측기로 정의하여 일정치인 평균벡터 대신에 과거의 특징벡터의 영향을 받아 동적으로 변화하는 신경망에 의한 예측치를 이용하므로 학습패턴 설정자체가 시변성을 반영하는 동적 네트워크의 특성을 가진다. 따라서 음성과 같은 시계열 패턴의 인식에 유리하다. 회귀신경망 예측 HMM은 예측형 회귀신경망의 구조에 따라 Elman망 예측 HMM과 Jordan망 예측 HMM으로 구분하였다. 실험에서는 회귀신경망 예측 HMM의 상태수를 4, 5, 6으로 증가시켜 각 상태 수별로 예측차수 및 중간층 유니트 수의 변화에 따른 인식성능을 조사하였다. 실험결과 평가용. 데이터에 대하여 Elman망예측 HMM은 상태수가 6이고, 예측차수가 3차, 중간층 유니트의 수가 15차원일 때, Jordan망 예측 HMM의 경우 상태수가 5이고, 예측차수가 3차, 중간층 유니트의 수가 10차원일 때 각각 99.5%로 우수한 결과를 얻었다.
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.1105-1108
/
2021
국내외 IOT 시장의 성장률은 꾸준히 증가할 것으로 예측된다. 특히 스마트 가전 시장 분야의 경우 다른 스마트 홈 분야보다 규모뿐만 아니라 성장률 역시 높은 편에 속한다. 한편 코로나 시대 도래로 인하여 개인의 가정에 머무르는 시간은 많아졌으며 개인의 살균에 대한 관심 역시 높아지게 되었다. 본 논문은 인공지능 자동 살균기를 설계하여 하나의 스마트 가전제품 서비스를 설계하는 솔루션을 제공하고자 한다. 인공지능 이미지 인식 기술을 통해 사용자 활동 패턴을 파악하고 이를 기반으로 살균 시간 도출 및 살균 시간 추천 알고리즘을 통해 사용자 맞춤형 살균 서비스를 제공하며 사용자의 활동 패턴에 맞춤화된 적절한 살균 강도를 결정할 수 있도록 군집화를 통해 살균 강도 결정 서비스도 제공한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.50-52
/
2023
ML/DL과 같은 AI의 연구가 HPC 환경에서 수행되면서 데이터 병렬화, 분산 학습 및 대규모 데이터 세트를 처리를 위한 요구사항이 급격히 증가하였다. 또한, 병렬처리 연산에 특화된 가속기 기반 이기종 아키텍처 환경 변화로 I/O 처리에 고대역폭, 저지연의 스토리지 기술을 필요로 하고 있다. 본 논문에서는 고집적의 병렬 컴퓨팅 환경에 고성능 HPC, AI 애플리케이션을 처리하기 위한 티어링 스토리지 기술을 논한다. 나아가 실제 고성능 NVMe 기반의 플래시 티어링 계층 구성에서 액세스 패턴에 따른 데이터 처리 환경을 구축하고 성능을 검증한다. 이로써 다양한 사용자 어플리케이션의 I/O 패턴을 특성에 맞게 지원할 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2004.04a
/
pp.313-315
/
2004
인터넷 사용이 보편화됨에 따라 기존의 방화벽만으로는 탐지가 불가능한 웹 서비스의 취약점을 이용한 공격이 증가하고 있다. 그 중에서도 특히 웹 어플리케이션의 프로그래밍 오류를 이용한 침입이 공격 수단의 대부분을 차지하고 있다. 본 논문에서는 웹 어플리케이션의 동작을 분석한 후 취약점 발생 부분에 대해 웹 로그 마이닝 기법을 사용하여 실시간으로 로그를 분석함으로서 공격 패턴을 비교ㆍ분석한다. 또한 프로세스 분석기를 통한 결정(decision) 과정을 통해 침입으로 판단되면 해당 접속 프로세스(pid)를 제거 한 후 공격 아이피를 차단함으로서 침입을 탐지하는 메커니즘을 제시한다.
Proceedings of the Korea Information Assurance Society Conference
/
2004.05a
/
pp.15-19
/
2004
인터넷 사용이 보편화됨에 따라 기존의 방화벽만으로는 탐지가 불가능한 웹 서버의 취약점을 이용한 공격이 나날이 증가하고 있고, 그 중에서도 특히 웹 어플리케이션의 프로그래밍 오류를 이용한 침입이 공격 수단의 대부분을 차지하고 있다. 본 논문에서는 웹 어플리케이션의 취약점을 분석한 후 취약점 발생 부분에 대해 웹 서버 전용으로 로그 분석을 해 주는 실시간 에이전트를 도입하였다. 실시간 에이전트는 공격 패턴을 비교ㆍ분석한 후 프로세스 분석기를 통한 결정(decision) 과정을 통해 침입으로 판단되면 해당 접속 프로세스(pid)를 제거한 후 공격 아이피를 차단함으로서 침입을 탐지하는 모델을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.