• Title/Summary/Keyword: 기하학적 제약조건

Search Result 64, Processing Time 0.034 seconds

Optimal Design of Trusses Using Advanced Analysis and Genetic Algorithm (고등해석과 유전자 알고리즘을 이용한 트러스 구조물의 최적설계)

  • Choi, Se-Hyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.161-167
    • /
    • 2008
  • In this paper, the optimal design of trusses using advanced analysis and genetic algorithm is performed. An advanced analysis takes into account geometric nonlinearity and material nonlinearity. The micro genetic algorithm is used as optimization technique. The weight of structures is treated as the objective function. The constraint functions are defined by load-carrying capacities and displacement requirement. The effectiveness of the proposed method is verified by comparing the results of the proposed method with those of other method.

Visualization of Vector Fields from Density Data Using Moving Least Squares Based on Monte Carlo Method (몬테카를로 방법 기반의 이동최소제곱을 이용한 밀도 데이터의 벡터장 시각화)

  • Jong-Hyun Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • In this paper, we propose a new method to visualize different vector field patterns from density data. We use moving least squares (MLS), which is used in physics-based simulations and geometric processing. However, typical MLS does not take into account the nature of density, as it is interpolated to a higher order through vector-based constraints. In this paper, we design an algorithm that incorporates Monte Carlo-based weights into the MLS to efficiently account for the density characteristics implicit in the input data, allowing the algorithm to represent different forms of white noise. As a result, we experimentally demonstrate detailed vector fields that are difficult to represent using existing techniques such as naive MLS and divergence-constrained MLS.

Adjustment of Exterior Orientation Parameters Geometric Registration of Aerial Images and LIDAR Data (항공영상과 라이다데이터의 기하학적 정합을 위한 외부표정요소의 조정)

  • Hong, Ju-Seok;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.585-597
    • /
    • 2009
  • This research aims to develop a registration method to remove the geometric inconsistency between aerial images and LIDAR data acquired from an airborne multi-sensor system. The proposed method mainly includes registration primitives extraction, correspondence establishment, and EOP(Exterior Orientation Parameters) adjustment. As the registration primitives, we extracts planar patches and intersection edges from the LIDAR data and object points and linking edges from the aerial images. The extracted primitives are then categorized into horizontal and vertical ones; and their correspondences are established. These correspondent pairs are incorporated as stochastic constraints into the bundle block adjustment, which finally precisely adjusts the exterior orientation parameters of the images. According to the experimental results from the application of the proposed method to real data, we found that the attitude parameters of EOPs were meaningfully adjusted and the geometric inconsistency of the primitives used for the adjustment is reduced from 2 m to 2 cm before and after the registration. Hence, the results of this research can contribute to data fusion for the high quality 3D spatial information.

Discrete Optimum Design of Reinforced Concrete Beams using Genetic Algorithm (유전알고리즘을 이용한 철근콘크리트보의 이산최적설계)

  • Hong, Ki-Nam;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.259-269
    • /
    • 2005
  • This paper describes the application of genetic algorithm for the discrete optimum design of reinforced concrete continuous beams. The objective is to minimize the total cost of reinforced concrete beams including the costs of concrete, form work, main reinforcement and stirrup. The flexural and shear strength, deflection, crack, spacing of reinforcement, concrete cover, upper-lower bounds on main reinforcement, beam width-depth ratio and anchorage for main reinforcement are considered as the constraints. The width and effective depth of beam and steel area are taken as design variables, and those are selected among the discrete design space which is composed with dimensions and steel area being used from in practice. Optimum result obtained from GA is compared with other literature to verify the validity of GA. To show the applicability and efficiency of GA, it is applied to three and five span reinforced concrete beams satisfying with the Korean standard specifications.

Advanced analysis and optimal design of space steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 공간 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.683-694
    • /
    • 2004
  • Advanced analysis and optimal design of semi-rigid space steel frames were presented. The advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. Material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and the parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. One by one, the member with the largest unit value evaluated using the LRFD interaction equation were placed adjacent to a larger member selected from the database. The objective function was assumed to be the weight of steel frame, while the constraint functions were load-carrying capacities, deflections, inter-story drifts, and the ductility requirements. The member sizes determined using the proposed method were compared to those derived from the conventional LRFD method.

Advanced analysis and optimal design of steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu;Park, Moon Ho;Song, Jae Ho;Lim, Cheong Kweon
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.661-672
    • /
    • 2003
  • The advanced analysis and optimal design of semi-rigid frame were presented. Advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. On the other hand, material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. The member with the largest unit value evaluated using the LRFD interaction equation was replaced one by one with an adjacent larger member selected from the database. The objective function was assumed as the weight of steel frame, with the constraint functions accounting for load-carrying capacities, deflections. inter-story drifts, and ductility requirement. Member sizes determined by the proposed method were compared with those derived using the conventional LRFD method.

Progressive Reconstruction of 3D Objects from a Single Freehand Line Drawing (Free-Hand 선화로부터 점진적 3차원 물체 복원)

  • 오범수;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.168-185
    • /
    • 2003
  • This paper presents a progressive algorithm that not only can narrow down the search domain in the course of face identification but also can fast reconstruct various 3D objects from a sketch drawing. The sketch drawing, edge-vertex graph without hidden line removal, which serves as input for reconstruction process, is obtained from an inaccurate freehand sketch of a 3D wireframe object. The algorithm is executed in two stages. In the face identification stage, we generate and classify potential faces into implausible, basis, and minimal faces by using geometrical and topological constraints to reduce search space. The proposed algorithm searches the space of minimal faces only to identify actual faces of an object fast. In the object reconstruction stage, we progressively calculate a 3D structure by optimizing the coordinates of vertices of an object according to the sketch order of faces. The progressive method reconstructs the most plausible 3D object quickly by applying 3D constraints that are derived from the relationship between the object and the sketch drawing in the optimization process. Furthermore, it allows the designer to change viewpoint during sketching. The progressive reconstruction algorithm is discussed, and examples from a working implementation are given.

A Study on the Bucking Load Formulae for the Single Layer Latticed Dome (단층 래티스 돔의 좌굴하중 산정식에 관한 연구)

  • Han, Sang-Eul;Yang, Jae-Geun;Lee, Sang-Ju;Lee, Jung-Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.75-82
    • /
    • 2006
  • The single layer latticed dome is very sensitive on the slenderness ratio and half open angle of the elements, load condition, and the connection type because it is organized by a lot of thin elements, so we have to use the geometrically nonlinear buckling load when the buckling of the structures is analyzed. But, it is very difficult to design the single layer latticed domes considered all renditions. Therefore the purpose of this paper is to propose the appropriate design method of the single layer latticed dome considered the geometrically nonlinear buckling load in base of the linear buckling load by the eigenvalue analysis.

  • PDF

Pupil Detection using Hybrid Projection Function and Rank Order Filter (Hybrid Projection 함수와 Rank Order 필터를 이용한 눈동자 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.27-34
    • /
    • 2014
  • In this paper, we propose a pupil detection method using hybrid projection function and rank order filter. To reduce error to detect eyebrows as pupil, eyebrows are detected using hybrid projection function in face region and eye region is set to not include the eyebrows. In the eye region, potential pupil candidates are detected using rank order filter and then the positions of pupil candidates are corrected. The pupil candidates are grouped into pairs based on geometric constraints. A similarity measure is obtained for two eye of each pair using template matching, we select a pair with the smallest similarity measure as final two pupils. The experiments have been performed for 700 images of the BioID face database. The pupil detection rate is 92.4% and the proposed method improves about 21.5% over the existing method..

Design of Steel Frames using Plastic Hinge Analysis (소성힌지해석을 이용한 강골조 시스템의 설계)

  • Chang, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.131-140
    • /
    • 2004
  • The main objective of the research is to develop an algorithm for the optimum design of two dimensional steel frames using refined plastic hinge analysis which considers material and geometrical nonlinearities. Using developed algorithm, an optimum design was perform without calculating an effective length factor of the column (K-factor). A multi-level discrete optimization technique with two parameters has been developed and employed in the optimum design algorithm. The optimization algorithm is applied to structural design with the objective of minimizing the weight of a structure and with constraints on load limit, frame drift, ductility. Various application example is provided to demonstrate the feasibility, validity and efficiency of the developed program.