• Title/Summary/Keyword: 기하학적 연산

Search Result 81, Processing Time 0.024 seconds

Connecting the Inner and Outer Product of Vectors Based on the History of Mathematics (수학사에 기초한 벡터의 내적과 외적의 연결)

  • Oh, Taek-Keun
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.2
    • /
    • pp.177-188
    • /
    • 2015
  • In this paper, I investigated the historical development process for the product of two vectors in the plane and space, and draw implications for educational guidance to internal and external product of vectors based on it. The results of the historical analysis show that efforts to define the product of the two line segments having different direction in the plane justified the rules of complex algebraic calculations with its length of the product of their lengths and its direction of the sum of their directions. Also, the efforts to define the product of the two line segments having different direction in three dimensional space led to the introduction of quaternion. In addition, It is founded that the inner product and outer product of vectors was derived from the real part and vector part of multiplication of two quaternions. Based on these results, I claimed that we should review the current deployment method of making inner product and outer product as multiplications that are not related to each other, and suggested one approach for connecting the inner and outer product.

The Discrete Optimum Design of Steel Frame Considering Material and Geometrical Nonlinearties (재료 및 기하학적 비선형을 고려한 브레이싱된 강뼈대구조물의 최적설계)

  • Chang, Chun Ho;Park, Moon Ho;Lee, Hae Kyoung;Park, Soon Eung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.317-328
    • /
    • 2000
  • The objective of the research is to develop an algorithm for the optimum design of two-dimensional braced steel frames using an advanced analysis, which considers both material and geometric nonlinearties. Since both nonlinearties are considered in analysis process, Optimum design algorithm which does not require to calculate K-factor is presented. A multi-level discrete optimization technique with two parameters that uses the information of structural system and separate member has been developed. The structural analysis is performed by the relined plastic-hinge method which is based on zero-length plastic hinge theory. Optimization problem are formulated by AISC-LRFD code. The feasibility, validity and efficiency of the developed algorithm is demonstrated by the results of the braced steel frame.

  • PDF

Three Dimensional Analysis of the Whole Interior-Surface of Structures by Multiple Close-Range Photogrammetry (다중근접사진측량에 의한 구조물 내부전면의 3차원 해석)

  • 이진덕;강준묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.1
    • /
    • pp.7-18
    • /
    • 1993
  • In analyzing whole surface of non-topographic objects, the design of multi-station photogrammetric network must involve a number of questions such as geometric configuration of exposure stations, imaging geometry, control point configuration or weight allowance of adjustments. Above all, the surveying of the interior of narrow longitudinal structures needs the design of special photogrammetric network. The main objective of this paper is to suggest the schemes for solving difficult problems attendant upon whole inside-surface analysis of structure and to improve the accuracy and reliability of final measurements. For it, the multi-station exposure network suitable to shape and size of the inside of the structure was designed. Then three dimensional data were acquired by bundle adjustments derived from multi-station photos and the effects of network design factors on accuracy of measurements were contemplated. Also, the algorithm for detection of blunders was developed here is expected to lead to improvement of the reliability of photogrammetric solutions.

  • PDF

New Discrete Curvature Error Metric for the Generation of LOD Meshes (LOD 메쉬 생성을 위한 새로운 이산 곡률 오차 척도)

  • Kim, Sun-Jeong;Lim, Soo-Il;Kim, Chang-Hun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.3
    • /
    • pp.245-254
    • /
    • 2000
  • This paper proposes a new discrete curvature error metric to generate LOD meshes. For mesh simplification, discrete curvatures are defined with geometric attributes, such as angles and areas of triangular polygonal model, and dihedral angles without any smooth approximation. They can represent characteristics of polygonal surface well. The new error metric based on them, discrete curvature error metric, increases the accuracy of simplified model by preserving the geometric information of original model and can be used as a global error metric. Also we suggest that LOD should be generated not by a simplification ratio but by an error metric. Because LOD means the degree of closeness between original and each level's simplified model. Therefore discrete curvature error metric needs relatively more computations than known other error metrics, but it can efficiently generate and control LOD meshes which preserve overall appearance of original shape and are recognizable explicitly with each level.

  • PDF

Developing Expert System for Recovering the Original Form of Ancient Relics Based on Computer Graphics and Image Processing (컴퓨터 그래픽스 및 영상처리를 이용한 문화 원형 복원 전문가시스템 개발)

  • Moon, Ho-Seok;Sohn, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.269-277
    • /
    • 2006
  • We propose a new expert system for recovering the broken fragments of relics into an original form using computer graphics and image processing. This paper presents a system with an application to tombstones objects of flat plane with letters carved in for assembling the fragments by placing their respective fragments in the right position. The matching process contains three sub-processes: aligning the front and letters of an object, identifying the matching directions, and determining the detailed matching positions. We apply least squares fitting, vector inner product, and geometric and RGB errors to the matching process. It turned out that 2-D translations via fragments-alignment enable us to save the computational load significantly. Based on experimental results from the damaged cultural fragments, the performance of the proposed method is illustrated.

  • PDF

Target Localization Using Geometry of Detected Sensors in Distributed Sensor Network (분산센서망에서 표적을 탐지한 센서의 기하학적 구조를 이용한 표적위치 추정)

  • Ryu, Chang Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.133-140
    • /
    • 2016
  • In active sonar field, a target detection and localization based on a distributed sensor network has been much studied for the underwater surveillance of the coast. Zhou et al. proposed a target localization method utilizing the positions of target-detected sensors in distributed sensor network which consists of detection-only sensors. In contrast with a conventional method, Zhou's method dose not require to estimate the propagation model parameters of detection signal. Also it needs the lower computational complexity, and to transmit less data between network nodes. However, it has large target localization error. So it has been modified for reducing localization error by Ryu. Modified Zhou's method has better estimation performance than Zhou's method, but still relatively large estimation error. In this paper, a target localization method based on modified Zhou's method is proposed for reducing the localization error. The proposed method utilizes the geometry of the positions of target-detected sensors and a line that represents the bearing of target, a line can be found by modified Zhou's method. This paper shows that the proposed method has better target position estimation performance than Zhou's and modified Zhou's method by computer simulations.

Robust Computation of Polyhedral Minkowski Sum Boundary (다면체간의 강건한 민코스키합 경계면 계산)

  • Kyung, Min-Ho;Sacks, Elisha
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.2
    • /
    • pp.9-17
    • /
    • 2010
  • Minkowski sum of two polyedra is an operation to compute the sum of all pairs of points contained in the polyhedra. It has been a very useful tool to solve many geometric problems arising in the areas of robotics, NC machining, solid modeling, and so on. However, very few algorithms have been proposed to compute Minkowski sum of polyhedra, because computing Minkowski sum boundaries is susceptible to roundoff errors. We propose an algorithm to robustly compute the Minkowski sum boundaries by employing the controlled linear perturbation scheme to prevent numerically ambiguous and degenerate cases from occurring. According to our experiments, our algorithm computes the Minkowski sum boundaries with the precision of $10^{-14}$ by perturbing the vertices of the input polyhedra up to $10^{-10}$.

A Study on the Measurement of Morphological properties of Coarse-grained Bottom Sediment using Image processing (이미지분석을 이용한 조립질 하상 토사의 형상학적 특성 측정 연구)

  • Kim, Dong-Ho;Kim, Sun-Sin;Hong, Jae-Seok;Ryu, Hong-Ryul;Hawng, Kyu-Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.279-279
    • /
    • 2022
  • 최근 이미지분석 기술은 하드웨어 및 소프트웨어 기술의 급격한 발전으로 인해 의학, 생물학, 지리학, 재료공학 등에서 수많은 연구 분야에서 광범위하게 활용되고 있으며, 이미지분석은 다량의 토사에 대하여 입경을 포함한 형상학적 특성을 간편하게 정량화 할 수 있기 때문에 매우 효과적인 분석 방법으로 판단된다. 현재 모래의 입도분석 방법으로는 신뢰성 있는 체가름 시험법(KSF2302) 등이 있으나, 번거로운 처리과정과 많은 시간이 소요된다. 또한 입자형상은 입경이 세립 할수록 직접 측정이 어렵기 때문에, 최근에는 이미지 분석을 이용하는 방법이 시도되고 있다. 본 연구에서는 75㎛ 이상의 조립질 하상 토사 이미지를 취득하여, 입자들의 장·축단 길이, 면적, 둘레, 공칭직경 및 종횡비 등의 형상학적 특성인자를 자동으로 측정하는 프로그램 개발을 수행하였다. 프로그램은 이미지 분석에 특화된 라이브러리인 OpenCV(Open Source Computer Vision)를 적용하였다. 이미지 분석 절차는 크게 이미지 취득, 기하보정, 노이즈제거, 객체추출 및 형상인자 측정 단계로 구성되며, 이미지 취득시 패널의 하단에 Back light를 부착해 시료에 의해 발생되는 음영을 제거하였다. 기하보정은 원근변환(perspective transform)을 적용했으며, 노이즈 제거는 모폴로지 연산과 입자간의 중첩으로 인한 뭉침을 제거하기 위해 watershed 알고리즘을 적용하였다. 최종적으로 객체의 외곽선 추출하여 입자들의 다양한 정보(장축, 단축, 둘레, 면적, 공칭직경, 종횡비)를 산출하고, 분포형으로 제시하였다. 본 연구에서 제안하는 이미지분석을 적용한 토사의 형상학적 특성 측정 방법은 시간과 비용의 측면에서 보다 효율적으로 하상 토사에 대한 다양한 정보를 획득 할 수 있을 것으로 기대한다.

  • PDF

Real-Time Image-Based Relighting for Tangible Video Teleconference (실감화상통신을 위한 실시간 재조명 기술)

  • Ryu, Sae-Woon;Parka, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.807-810
    • /
    • 2009
  • This paper deals with a real-time image based relighting system for tangible video teleconference. The proposed image based relighting system renders the extracted human object using the virtual environmental images. The proposed system can homogenize virtually the lighting environments of remote users on the video teleconference, or render the humans like they are in the virtual places. To realize the video teleconference, the paper obtains the 3D object models of users in real-time using the controlled lighting system. In this paper, we use single color camera and synchronized two directional flash lights. Proposed system generates pure shading images using on and off flash images subtraction. One pure shading reflectance map generates a directional normal map from multiplication of each reflectance map and basic normal vector map. Each directional basic normal map is generated by inner vector calculation of incident light vector and camera viewing vector. And the basic normal vector means a basis component of real surface normal vector. The proposed system enables the users to immerse video teleconference just as they are in the virtual environments.

Efficient 3D Modeling of CSEM Data (인공송신원 전자탐사 자료의 효율적인 3차원 모델링)

  • Jeong, Yong-Hyeon;Son, Jeong-Sul;Lee, Tae-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.75-80
    • /
    • 2009
  • Despite its flexibility to complex geometry, three-dimensional (3D) electromagnetic(EM) modeling schemes using finite element method (FEM) have been faced to practical limitation due to the resulting large system of equations to be solved. An efficient 3D FEM modeling scheme has been developed, which can adopt either direct or iterative solver depending on the problems. The direct solver PARDISO can reduce the computing time remarkably by incorporating parallel computing on multi-core processor systems, which is appropriate for single frequency multi-source configurations. When limited memory, the iterative solver BiCGSTAB(1) can provide fast and stable convergence. Efficient 3D simulations can be performed by choosing an optimum solver depending on the computing environment and the problems to be solved. This modeling includes various types of controlled-sources and can be exploited as an efficient engine for 3D inversion.

  • PDF