• Title/Summary/Keyword: 기포 상승

Search Result 91, Processing Time 0.03 seconds

Experimental Study on the Dissociation Characteristics of Methane Hydrate Pellet by Hot Water Injection (열수 주입법에 의한 메탄가스 하이드레이트 펠릿의 해리 특성에 관한 실험 연구)

  • Lee, Seung-Han;Yoon, Yong-Seok;Seong, Kwan-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1177-1184
    • /
    • 2011
  • Gas-to-Solid (GTS) technology is composed of three stages: hydrate production, transportation, and regasification. For efficient operation of regasification plants, it is crucial to predict the temperature and flow rate of hot water necessary to dissociate the hydrate pellets. Dissociated gas escaping from the pellet surface, when in contact with hot water, will alter the flow field and consequently alter the heat transfer rate. Methane hydrate pellet dissociation characteristics in low- to moderatetemperature water were investigated by taking images of the changes in the hydrate pellets' shapes in a pressurized reactor and measuring the total time required for complete melting of the pellets. The effects of water temperature, hydrate conversion rate, and flow speed on the dissociation completion time were also investigated. Bubbling gas released from the pellet surface induced a secondary flow that enhanced the heat transfer rate and thus decreased the dissociation time. It was also found that a considerable flow rate was needed to significantly decrease the dissociation time.

Improved Thermal Resistance of an LED Package Interfaced with an Epoxy Composite of Diamond Powder Suspended in H2O2 (과산화수소 적용 TIM의 LED 패키지 열특성 개선효과)

  • Choi, Bong-Man;Hong, Seong-Hun;Jeong, Yong-Beom;Kim, Ki-Bo;Lee, Seung-Gol;Park, Se-Geun;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.221-224
    • /
    • 2014
  • We present a method for manufacturing a TIM used for packaging a high-power LED. In this method a mixture of diamond powder and hydrogen peroxide is used as a filler epoxy. The thermal resistance of the TIM with hydrogen peroxide was improved by about 30% over the thermal resistance of the TIM without hydrogen peroxide. We demonstrate that as a result the heat generated from the chip is easily dissipated through the TIM.

Flame Retardancy and Foaming Properties of the Waste-Polyethylene(W-PE)/Waste-Ethylene vinyl acetate copolymer(W-EVA) Blend Foams (폐폴리에틸린/폐에틸렌 비닐아세테이트공중합체 블렌드 발포체의 난연 및 발포 특성에 관한 연구)

  • Moon, Sung-Chul;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.316-325
    • /
    • 2003
  • The blends of waste-polyethylene (W-PE)/waste-ethylene vinyl acetate copolymer (W-EVA) with inorganic and phosphorous flame retardants (i.e., aluminium hydroxide, magnesium hydroxide, and so on) were prepared by melt mixing techniques at different compositions and foamed. The flame retardancy and foaming properties of the blends, limiting oxygen index (LOI), heat release rate (HRR), carbon monoxide yield (COY), total heat release (THR), effective heat of combustion (EHC), expandability and cell structure were investigated using cone calorimeter, SEM, LOI tester and polarizing microscope. When the composition ratios of the W-PE/W-EVA blends were 50/50 (w/w), and the ranges of the flame retardants contents were $175{\sim}220 phr$, we could obtain foams with the uniform and closed cell, high expandability (1900 % or more), high LOI, and low HRR values. These results depend on crosslinking and loaming conditions, a char formation and smoke suppressing effect. Aluminium hydroxide had more effect in the increase of LOI than magnesium hydroxide, while magnesium hydroxide considerably affected the decrease of HRR and COY.

Effects of Packaging Method on Quality of Chilled Plaice Muscle (포장방법이 냉장어육의 품질에 미치는 영향)

  • 신완철;송재철;최석영;김미숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1292-1296
    • /
    • 2003
  • The purpose of this study is to investigate the changes of physico-chemical properties of chilled plaice muscle, stored at 4$^{\circ}C$ for 0 ∼ 21 days, with different packaging methods (vacuum packaged with PVDC and aerobic packaged with HDPE). pH value in aerobic packaged plaice muscle (APPM) decreased from 6.3 to 6.09 at first 2 day storage, and then increased gradually during storage time. Although pH pattern of vacuum packaged plaice muscle (VPPM) was similar to that of APPM, change of pH value during storage time was slower and lower than APPM. VBN value in aerobic packaged one increased during storage time. Especially it increased significantly after 7 days of storage. While VBN value in VPPM increased only a little to 14 days. TBA value showed significant difference between APPM and VPPM. WHC of APPM was higher than that of VPPM after 7 days of storage. In electrophoretic pattern of myofibril of APPM stored for 14 days hydrolysis of heavy chain and tropomyosin was observed. However, in VPPM, some hydrolysis occurred only in heavy chain. SDS-PAGE analysis showed that hydrolysis of VPPM occurs later than that of APPM.

Study of Hydrodynamics and Reaction Characteristics of K-based Solid Sorbents for CO2 Capture in a Continuous System Composed of Two Bubbling Fluidized-bed Reactors (두 개의 기포유동층으로 구성된 연속장치에서 CO2 회수를 위한 K-계열 고체흡수제의 수력학적 특성 및 반응특성)

  • Kim, Ki-Chan;Kim, Kwang-Yul;Park, Young Cheol;Jo, Sung-Ho;Ryu, Ho-Jung;Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.499-505
    • /
    • 2010
  • In this study, hydrodynamics and reaction characteristic of K-based solid sorbents for $CO_2$ capture were investigated using a continuous system composed of two bubbling fluidized-bed reactors(1.2 m tall bed with 0.11 m i.d.). Potassium-based dry sorbents manufactured by the Korea Electric Power Research Institute were used, which were composed of $K_2CO_3$ of 35% for $CO_2$ absorption and supporters of 65% for mechanical strength. The continuous system consists of two bubbling fluidized-bed reactors, solid injection nozzle, riser, chiller, analyzer and heater for regeneration reaction. The minimum fluidizing velocity of the continuous system was 0.0088 m/s and the solid circulation rate measured was $10.3kg/m^2{\cdot}s$ at 1.05 m/s velocity of the solid injection nozzle. The $CO_2$ concentration of the simulated gas was about 10 vol% in dry basis. Reaction temperature in carbonator and regenerator were maintained about $70^{\circ}C$ and $200^{\circ}C$, respectively. Differential pressures, which were maintained in carbonator and regenerator, were about $415mmH_2O$ and $350mmH_2O$, respectively. In order to find out reaction characteristics of dry sorbents, several experiments were performed according to various experimental conditions such as $H_2O$ content(7.28~19.66%) in feed gas, velocity (0.053~0.103 m/s) of simulated gas, temperature($60{\sim}80^{\circ}C$) of a carbonator, temperature($150{\sim}200^{\circ}C$) of a regenerator and solid circulation rate($7.0{\sim}10.3kg/m^2{\cdot}s$). The respective data of operating variables were saved and analyzed after maintaining one hour in a stable manner. As a result of continuous operation, $CO_2$ removal tended to increase by increasing $H_2O$ content in feed gas, temperature of a regenerator and solid circulation rate and to decrease by increasing temperature of a carbonator and gas velocity in a carbonator.

Utilization of Wood Chips for Disposing of Swine Manure (목질칩의 축분뇨 정화재로의 이용)

  • Choi, In-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.203-210
    • /
    • 2001
  • In order to environmentally use wood chips manufactured from low valued forest resources by forest tendering, wood chips were used for the evaluation on chips characteristics, decomposition capability of organic wastes, and field experiment and determination of conditions for decomposer. Bioclusters manufactured by Cryptomeria japonica, commercially available wood chips in Japan, showed higher pore ratio, water reservation and water resistance, and higher cellulose content with lower hot water solubles than domestic wood chips. The useful size of wood chips for swine manure decomposition was 10 (length) ${\times}$ 5 (width) ${\times}$ 2 (thickness) mm, and cellulose contents and alkali solubles of Pinus densiflora and Populus tomentiglandulosa were similar to those of bioclusters. According to the decomposition ratio depending on wood species, it was ordered as Pinus densiflora > Pinus koraiensis > Cryptomeria japonica. The swine manure decomposition ratio depending on treatment hours by Pinus koraiensis was constant with the ratio of 15 to 16 g per hour by 1 kg of chip, indicating of daily swine decomposition amount of 390 kg by 1 ton of chips which was equal to the amount of daily swine manure production by 70 swines. Analyzing by long term used wood chips during 40 days treatment, the treated wood chips characteristically showed stable total nitrogen content, suitable pH, high accumulation of inorganic contents such as calcium, phosphorus, potassium and sodium, and no odor. During winter, the inner temperature of decomposer was kept at $43^{\circ}C$, but air bubble was occurred due to high pH and viscosity of swine manure. The most appropriate mixing ratio between wood chips and swine manure was 1 versus 2 or 3, and at more than ratio 1 versus 3, ammonia gas was caused because of anaerobic fermentation status by high moisture content of wood chips. The mixing interval of decomposer was 3 mins. per hour for the best swine decomposition.

  • PDF

Syntheses and Properties of Isosorbide-based Cationic Gemini Surfactants (이소소르비드 기반의 양이온 제미니 계면활성제 합성 및 물성)

  • Cho, Jung-Eun;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • In this study, a cationic gemini surfactant was synthesized using isosorbide, in order to modify the alkyl chain length in the range of C10~C16. The c.m.c and surface tension of the synthesized cationic gemini surfactant were measured to be in the ranges of 5.13 × 10-4~1.62 × 10-4 mol/L and 31.86~37.41 dyne/cm, respectively. The surface tension increased with increasing the length of the alkyl group. In addition, as the area per molecule occupied by the surfactant adsorbed on the interface increased with the reduced extent of adsorption, the bubble generation at the air-water interface decreased. The emulsifying capacity in benzene was maintained above 60 ± 5% after 8 h while that in soybean oil tended to decrease above 50 ± 5%. The performance was superior in benzene, a highly hydrophobic substance, and the emulsion stability was shown to be consistent beyond 1 h during the preparation of pre-emulsion in oil and water. The antimicrobial activity was dependent on the length of the hydrophobic chain of the synthesized cationic gemini surfactant due to the increased size of the clean zone in Escherichia coli (E.coli) and Staphylococcus aureus.

Fluid Inclusion Study of the Samcheonpo Amethyst Deposit of Kyongsangnamdo, Korea (경상남도 삼천포 광산의 자수정에 대한 유체포유물 특성)

  • Bae, Yun-Sue;Yang, Kyoung-Hee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.153-162
    • /
    • 2006
  • Fluid inclusions in amethyst from the Samcheonpo amethyst deposit of the Waryongsan area, Kyongnam generally grouped into four different types: Type I (liquid-rich and $10{\sim}23wt%$ NaCl, $Th=289{\sim}359^{\circ}C$), Type II (vapor-rich and $2{\sim}10wt%$ NaCl, $Th=304{\sim}365^{\circ}C;$), Type III (halite-bearing, $31{\sim}54wt%$ NaCl, $Th=259{\sim}510^{\circ}C;$), and Type IV ($CO_{2}-bearing\;9{\sim}13wt%\;NaCl,\;126{\sim}277^{\circ}$). Type I, II, and III inclusions are confined in the lower part of the amethyst and Type IV in the upper, which indicates significant hydrothermal activity during the earliest stage of the amethyst growth or the solidus condition of granitic rocks. The earliest fluid exsolved from the crystallizing granitic magma formed Type IIIa which is spatially associated with silicate melt inclusions. The homogenization behavior of Type IIIa inclusions by dissolution of the halite crystal after the bubble disappearance indicates that Type IIIa inclusions were trapped at some relatively elevated pressure. Exsolution of Type IIIb, I, II forming fluids with gradual decrease in their salinity was followed. The last fluid was $CO_{2}-bearing$ fluid (Type IV), which is assumed to be derived by decarbonization reactions with the surrounding sedimentary rocks. It suggests that the fine-grained granitic rocks containing the Samcheonpo amethyst crystallized at the sub-solvus condition saturated with water and exsolved abundant water.

고무의 가황(加黃) 및 열전도론(熱傳導論) (3(三))

  • Heo, Dong-Seop;Gwon, Dong-Yong
    • Elastomers and Composites
    • /
    • v.10 no.2
    • /
    • pp.136-156
    • /
    • 1975
  • 고무는 불량열전도체(不良熱傳導體)이며 두께가 두꺼우면 내부(內部)가 적정온도수준(適正溫度水準)에 이르기 전까지 가황시간(加黃時間)이 길어진다. 가황온도(加黃溫度)가 상승(上昇)할수록 가황물(加黃物)의 물성(物性)은 열화(劣化)되는 경향(傾向이) 있다. 천연(天然)고무든지 합성(合成)고무든지 간(間)에 과가황(過加黃)에 대(對)한 저항성(抵抗性)이 나쁘므로 특(特)히 고온가황(高溫加黃)에 대(對)해 민감(敏感)하다. 이것은 고온(高溫)에서 단시간(短時間) 가황(加黃)일수록 가속(加速)된다. 평탄가황배합물(平坦加黃配合物)의 경우에서 보더라도 내부(內部)가 적절(適切)히 가황(加黃)되기도 전(前)에 외부(外部)는 과가황(過加黃)이 되는 수가 있다. 근래(近來) 발간(發刊)된 문헌(文獻)에서도 이러한 내용(內容)이 잘 설명(說明)이 되어 있는데 다른 각도(角度)에서 고찰(考察)해 볼것 같으면 정체시간(停滯時間)이 비교적(比較的) 길지 않는 한(限) 가황시간(加黃時間)은 정체시간(停滯時間)과 sheet 가황시간(加黃時間)과의 합(合)이라고 말할 수 있겠다. 예(例)를 들어 설명(說明)하자면 $130^{\circ}C(266^{\circ}F)$에서 정체시간(停滯時間)이 10분(分)이고 sheet 가황시간(加黃時間)이 20분(分)인 제품(製品)은 이 온도(溫度)에서 30분간(分間) 가황(加黃)해야 된다는 것이다. 온도계수(溫度係數)를 2라고 가정(假定)할 경우 $140^{\circ}C(284^{\circ}F)$에서의 가황시간(加黃時間)은 $30\times\frac{1}{2}=15$분(分)이 아니라 $20\times\frac{1}{2}+10=20$분(分)이 된다. 크기가 큰 제품(製品)은 보통(普通) 다음에 있는 여러 방법(方法)들 가운데 한 가지 또는 여러가지를 조합(組合)하여 가황(加黃)시킨다. a) 크기가 작은 것에 대한 것 보다 낮은 온도(溫度)에서 가황(加黃)한다. b) 침투가황-제품(浸透加黃-製品)을 가압하(加壓下)에 두고서 외부가황(外部加黃)은 단속(斷續)시키고 열(熱)이 중심(中心)으로 침투(浸透)하게 한다. c) 단계가황(段階加黃)-처음에는 저온(低溫)에서 시작(始作)하여 일정간격(一定間隔)을 두고 점차(漸次) 온도(溫度)를 상승(上昇)시켜 최종적(最終的)으로 가황온도(加黃溫度)까지 올린다. d) 가능(可能)하다면 metal base나 금형(金型)에서 고무를 증기가황(蒸氣加黃)시킬 경우에 있어서 속이 빈 축(軸)을 사용하여 내부(內部)로 부터 가열(加熱)하면 가황시간(加黃時間)이 단축(短縮)된다. e) 냉각중(冷却中)의 후가황(後加黃)-이것은 가열장치(加熱裝置)에서 끄집어낸 후 제품(製品)의 외부(外部)를 냉각(冷却)시키는 방법(方法)이다. 가열(加熱)된 제품(製品)이 쌓여 있거나 적절(適切)하게 냉각(冷却)되지 않을 때 가황(加黃)이 추가적(追加的)으로 되거나 과가황(過加黃)이 될 우려가 있는 제조공정(製造工程)에서는 흔히들 이 방법(方法)을 무시(無視)하고 있다. 여기서 강조(强調)해 두어야 할 것은 항상 제품(製品)의 외부(外部)를 완전(完全)히 가황(加黃)시킬 필요(必要)는 없다는 것이다. 다공성(多孔性)이나 기포생성(氣泡生成)을 조장(助長)하는 불량가황상태(不良加黃狀態)와 표면(表面)에서의 과가황상태간(過加黃狀態間)의 균형(均衡)을 취(取)해 줘야 하는데 물론(勿論) 이때는 가황시간(加黃時間)을 단축(短縮)시켜야 한다는 경제적(經濟的)인 측면(側面)도 아울러 고려(考慮)해야 한다. 이것은 고무기술자(技術者)가 당면(當面)해야할 과제(課題)에 속(屬)하며 바람직 한것은 본장(本章)의 내용(內容)이 여러 상황하(狀況下)에서 당면(當面)한 문제(問題)에 대(對)해 어떻게 대처(對處)해 야 할지를 모르는 여러 기술자(技術者)들에게 도움이 되었으면 하는 것이다.

  • PDF

Estimation of Soil Cooling Load in the Root Zone of Greenhouses (온실내 근권부의 지중냉각부하 추정)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2002
  • Root zone cooling, such as soil or nutrient solution cooling, is less expensive than air cooling in the whole greenhouse and is effective in promoting root activity, improving water absorption rate, decreasing plant temperature, and reducing high temperature stress. The heat transfer of a soil cooling system in a plastic greenhouse was analyzed to estimate cooling loads. The thermal conductivity of soil, calculated by measured heat fluxes in the soil, showed the positive correlation with the soil water content. It ranged from 0.83 to 0.96 W.m$^{[-10]}$ .$^{\circ}C$$^{[-10]}$ at 19 to 36% of soil water contents. As the indoor solar radiation increased, the temperature difference between soil surface and indoor air linearly increased. At 300 to 800 W.m$^{-2}$ of indoor solar radiations, the soil surface temperature rose from 3.5 to 7.$0^{\circ}C$ in bare ground and 1.0 to 2.5$^{\circ}C$ under the canopy. Cooling loads in the root zone soil were estimated with solar radiation, soil water content, and temperature difference between air and soil. At 300 to 600 W.m$^{-2}$ of indoor solar radiations and 20 to 40% of soil water contents,46 to 59 W.m$^{-2}$ of soil cooling loads are required to maintain the temperature difference of 1$0^{\circ}C$ between indoor air and root zone soil.