• Title/Summary/Keyword: 기포 상승

Search Result 91, Processing Time 0.022 seconds

NUMERICAL STUDY ON TWO-DIMENSIONAL MULTIPHASE FLOWS DUE TO DENSITY DIFFERENCE WITH INTERFACE CAPTURING METHOD (경계면 포착법을 사용한 밀도차에 따른 다상유동에 관한 수치해석적 연구)

  • Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.214-219
    • /
    • 2007
  • Both the bubble rising in a fully filled container and the droplet splash are simulated by a solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method (CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The present results are compared with other numerical solutions found in the literature. It is found that the present code simulate complex free surface flows such as multi phase flows due to large density difference efficiently and accurately.

  • PDF

A study on the behaviour of cavltation eroslon atalloy metals of slide bearing for internal combustion engine (내연기간용 슬라이드 베어링 합금재의 캐비테이션 침식겅동에 관한 연구)

  • 임우조;안석환;이진열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.44-49
    • /
    • 1992
  • 액체를 취급하는 기계.장치는 유속 및 회전속도 등이 빠르게 되면 유체충격과 정압의 저하에 따른 국부적 비등으로 인해 캐비테이션(cavitation) 현상이 발생한다. 이러한 캐비테이션현상에 따른 소음과 진동율 초래하고, 또한 기포의 붕괴에 따른 형격압으로 캐비테이션-침식(cavitation-erosion)이 발생하여 기계.장치의 구성재료에 손실이 일어남으로써 이들 기계의 효율을 저하시킴과 아울러 수명을 단종시킬 수 있다. 더욱이 부식성의 액체에 사용되는 기계.장치의 금속재료에는 캐비테이션(erosion-corrosion)이 중첩하여 발생하는 경우는 침식과 부식이 상호간에 가속하는 상승효과 때문에 기계.장치의 수명에 치명적인 영향을 미친다. 따라서 본 연구에서는 초음파 진동장치에 의한 각종 유중에서 베어링 합금 1종, 7종 및 켈-멧 4종에 대한 캐비테이션-침식실험을 실시하여, 침식손상거동및 특성등을 구명하고저 하였다.

  • PDF

Evaluation on Flotation Efficiency of Bubble-floc Agglomerates and Operation Characteristics of Hydraulic Loading Rate Using Population Balance in DAF Process (DAF공정에서 개체군 수지를 이용한 기포-플록 응집체의 부상효율과 수리학적 부하율의 운전특성 평가)

  • Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.531-540
    • /
    • 2008
  • The main advantage of dissolved air flotation (DAF) in water treatment process is the small dimension compared with conventional gravity sedimentation and it can be basically reduced by the separation zone performed with the short solid-liquid separation time. Fine bubbles make such a short time possible to carry out solid from liquid separation as a collector on the course of water treatment. Therefore, the dimension of separation zone in DAF process is practically determined by the rise velocity of the bubble-floc agglomerates, which is a floc attached with several bubbles. To improve flotation velocity and particle removal efficiency in DAF process, many researchers have tried to attach bubbles as much as possible to flocs. Therefore, the maximum number of attached bubble on a floc and the rise velocity of bubble-floc agglomerates considered as the most important factor to design the separation zone of flotation tank in DAF process was simulated based on the population balance theory. According to the simulation results of this study, the size and volume concentration of bubble influenced on the possible number of attached bubble on a floc. The agglomerates attached with smaller bubble was more sensitive to hydraulic loading rate in the separation zone of DAF process. For the design of a high rate DAF process applied over surface loading 40 m/hr. it is required a precise further study on the variation of bubble property and behavior including in terms of bubble size distribution.

A Study on Heat Transfer Characteristics for Removal of Absorption Heat in Absorption Process of Ammonia-Water Bubble Mole (암모니아-물 기포분사형 흡수과정에서의 흡수열 제거를 위한 열전달 특성 연구)

  • Lee, Jae-Cheol;Lee, Ki-Bong;Chun, Byung-Hee;Lee, Chan-Ho;Ha, Jong-Joo;Kim, Sung-Hyun
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.273-280
    • /
    • 2001
  • An absorber is a major component in the absorption refrigeration systems and its performance greatly affects the overall system performance. In this study, experimental analyses on heat transfer characteristics for removal of absorption heat in ammonia-water bubble mode absorber were performed. Heat transfer coefficients were estimated as the variations of input gas flow rate, solution flow rate, temperature, concentration, absorber diameter and height, and input flow direction. The increase of gas and solution flow rate affects positively in heat transfer. However, the increase of solution temperature and concentration affects negatively. Moreover, under the same Reynolds Numbers, countercurrent flow is superior to cocurrent flow in heat transfer performance. In addition, from these experimental data, empirical correlations which can explain easily the characteristics of heat transfer are derived.

  • PDF

Hydrodynamics and Liquid Flow Characteristics in an Internal Circulation Airlift Reactor using a Single Nozzle (단일노즐을 사용한 내부순환 공기리프트 반응기에서 수력학과 액체의 흐름특성)

  • Kim, Jong-Chul;Jang, Sea-Il;Son, Min-Il;Kim, Tae-Ok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.816-821
    • /
    • 1997
  • The hydrodynamics and the liquid flow characteristics were investigated in an internal circulation airlift reactor with a single nozzle as a gas distributor. In an air-water system, the gas holdup in the individual flow zone and the impulse-response curve of tracer were measured at various gas velocities and reactor heights. Experimental results showed that for the higher gas velocity(>about 8 cm/s), the flow behavior of bubbles in the riser was turbulent flow due to strong bubble coalescences and the axial height of dispersion zone of large bubbles having uniform sizes in the downcomer was decreased with increasing gas velocity. And mean gas holdups in the individual flow zone and the reactor were increased with increasing gas velocities and were decreased with increasing heights of the top section of the reactor and it was decreased with increasing the height of the top section and gas velocity. Flow characteristics of liquid in the riser and the downcomer was tend to access to plug flow and the overall flow behavior of liquid was mainly varied with the size of the top section which it was assumed to be perfect mixing zone. In these conditions, liquid circulation velocities were increased with increasing gas velocities and they were higher than those by using other gas distributors.

  • PDF

A Study on Characteristics of Aerobic Liquid-Composting using a Micro Air Diffusion and a Mixer System (미세기포와 교반을 이용한 호기성 액비특성에 관한 연구)

  • Gu, Bon-Woo;Oh, Dae-Min;Lee, Young-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1354-1360
    • /
    • 2010
  • The purpose of this study is to analyze the behavior of swine slurry wastewater from bogen, in the treatment of Aerobic Liquid-Composting treatment by Aerobic Liquid-Composting using a mixer and Micro Air Diffusion pH level was at the beginning and its rise was seemingly related to VFA. It appears that removal of BOD and COD are more effective by Aerobic than by Anaerobic. In terms of removal efficiency, it shows 70.9% of BOD and 39% of COD in M.A+Mix and 67.8% of BOD and 19% of COD in M.A. $NH_3-N$ decreases in all conditions, which is caused by both the characteristic of nitrogen and the rise of pH. $NO_3-N$ increases in all conditions. It is judged that the accumulation of $NO_3-N$ affects the reduction of the ratio of denitrification. In the result of the analysis of Manure in swine slurry of liquified fertilizer ingredients, content of Manure in swine slurry of liquified fertilizer ingredients in aerobic conditions (M.A+Mix) is higher than anaerobic conditions.

Air-liquid Flow Characteristics of Riser of Air-lift Pump (공기양수펌프 Riser 내의 기액유동특성)

  • Lee, Cheol-Hee;Cho, Dae-Hwan;Choi, Ju-Yeol;Park, Chan-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.239-244
    • /
    • 2006
  • As an effective means to convey crushed materials from seabed to onboard ship, air-lift pump provides a reliable mechanism due to its simple configuration and easy-to-operate principle. The present study is focused on fundamental investigation of related performance through analysis program based on the gas-liquid two-phase flow in circular pipes. It is summarized as important result that an optimum air mass flow rate exists for the maximum lifted liquid mass flow rate in terms of a given submergence rates.

  • PDF

Viscosity of Coal Slags under Gasification Conditions (가스화 조건에서 탄종에 따른 석탄 슬래그 점도 거동)

  • 문인식;조철범;오명숙
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.149-159
    • /
    • 2002
  • In the entrained flow gasifiers, the slag viscosity is an important parameter determining the operation conditions. The slag viscosities of 9 coals, which were selected and tested as possible gasification feedstock in Korea, were measured in a high temperature slag viscometer under gasification conditions. The type and size of crystalline phases that were known to affect the slag viscosity behavior were also determined. The slag samples were obtained from the IEA dry-feed gasifier. The slags of Alaska Usibelli, Curragh, Kideco, Adaro, Denisovsky, Baiduri and Drayton coals showed the behavior of crystalline slags, while those of Datong and Cypurus glassy slags. When a recommended minimum operating temperature was arbitrarily defined as $T_{1000}$poise/+$50^{\circ}C$ for glassy slags and $T_{cv}$ +$50^{\circ}C$ for crystalline slags, the Drayton slag required the lowest temperature, while Denisovsky slag required the highest. All the slags contained C $r_2$ $O_3$ from the refractory. The crystalline slags with $T_{cv}$ at around 132$0^{\circ}C$ contained large anorthites as the major crystalline phase that would have caused the rapid inrease in viscosity. Denisovsky slag contained many pores which were formed by $O_2$ from F $e_{x}$O reduction..

Comparison of Solid Circulation Characteristics with Change of Lower Loop Seal Geometry in a Circulating Fluidized Bed (순환유동층에서 하부 루프실 형태 변화에 따른 고체순환 특성 비교)

  • Lee, Dong-Ho;Jo, Sung-Ho;Jin, Gyoung-Tae;Yi, Chang-Keun;Ryu, Ho-Jung;Park, Seung Bin
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.522-529
    • /
    • 2014
  • Circulating fluidized bed system consists of SEWGS reactor - lower loop seal - regeneration reactor - riser - cyclone - upper loop seal has been used for solid circulation between the SEWGS reactor and the regeneration reactor in a SEWGS system for pre-combustion $CO_2$ capture. A vertical type lower loop seal has been used in current system but this lower loop seal requires high gas flow rate through the lower loop seal for fluidization and smooth solid circulation, and consequently, causes slugging behavior sometimes. To overcome these disadvantages, inclined type lower loop seal was proposed by this study. Solid circulation characteristics with change of lower loop seal geometry were measured and compared in a bubbling - bubbling - riser type circulating fluidized bed using $CO_2$ absorbent (P-78) as bed material at ambient temperature and pressure. We could conclude that the inclined lower loop seal is better than the vertical type lower loop seal from the viewpoints of minimum flow rate requirement for stable solid circulation and solid height change during solid circulation.

Flow Regime Transition in Air-Molten Carbonate Salt Two-Phase Flow System (공기-탄산용융염 이상흐름계에서의 흐름영역전이)

  • Cho, Yung-Zun;Yang, Hee-Chul;Eun, Hee-Chul;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.481-487
    • /
    • 2009
  • In this of study, effects of input air velocity(0.05~0.22 m/sec) and molten carbonate salt temperature ($870{\sim}970^{\circ}C$) on flow regime transition have been studied by adopting a drift-flux model of air holdup and a stochastic analysis of differential pressure fluctuations in an air-molten sodium carbonate salt two-phase system(molten salt oxidation process). Air holdup where the flow regime transition begins was determined by air holdup-drift flux plot. The air holdup value which the flow regime transition begins was increased with increasing molten carbonate salt temperature due to the decrease of viscosity and surface tension of molten carbonate salt. To characterize the flow regime transition more quantitatively, differential pressure fluctuation signals have been analyzed by adopting the stochastic method such as phase space portraits and Kolmogorov entropy, The Kolmogorov entropy decreased with an increasing of molten carbonate salt temperature but increased gradually with an increase in an air velocity, however, it exhibited different tendency with the flow regime and the air velocity value which flow regime transition begins was same to the results of drift-flux analysis.