• 제목/요약/키워드: 기포제

검색결과 277건 처리시간 0.03초

콘크리트용 기포제 종류 및 농도에 따른 기포의 특성 (Properties of Bubble According to Types and Concentrations of Concrete Foaming Agent)

  • 김진만;곽은구;오광진;강철
    • 콘크리트학회논문집
    • /
    • 제23권2호
    • /
    • pp.151-158
    • /
    • 2011
  • 선발포 방식을 통해 제조되는 기포 콘크리트에서 기포는 밀도, 강도, 공극 등의 물리적 특성에 영향을 끼치는 주요인이다. 기포 콘크리트에 대한 연구가 꾸준하게 진행되었지만, 기포 자체의 특성에 관한 연구는 화학적인 분야를 제외하고는 거의 없는 실정이다. 그러므로 용도에 적합한 기포 콘크리트를 제조하기 위해서는 기포의 성상에 대한 연구가 필수적으로 선행되어야 한다. 기포 콘크리트의 제조에서 기포를 유효하게 이용하기 위해서는 기포의 특성을 평가해야만 한다. 이 연구에서는 기포의 특성을 알아보기 위해 기포제 종류 및 농도 변화에 따른 기포의 특성에 관한 검토를 수행하였다. 기포의 특성을 알아보기 위해 사용한 기포제는 계면활성제계, 수지비누계, 단백질계 기포제를 사용하였고 기포제의 농도는 기포제 종류에 따라 0.05~13% 범위로 설정하였다. 측정 항목은 발포율, 기포 용적, 수용액 용적, 기포 크기 및 분포를 측정하였다. 분석 결과, 기포제 종류와는 상관없이 기포제 농도가 높을수록 발포율은 증가하는 것으로 나타났고, 기포제 농도는 기포, 수용액 용적 변화, 기포 크기 분포에도 영향을 끼치는 것으로 나타났다. 기포의 안정성 측면에서 단백질계가 계면활성제, 수지비누계 보다 높은 안정성을 나타냈다. 기포의 형상에서는 계면활성제계, 수지 비누계는 다각형의 기포를, 단백질계는 구형의 기포를 형성하였다.

기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구 (An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type)

  • 김진만;최훈국;박선규
    • 한국건축시공학회지
    • /
    • 제9권4호
    • /
    • pp.63-73
    • /
    • 2009
  • 최근 건설생산현장에서는 경제가 성장함과 동시에 사회적으로 급격하게 증가하는 건축물의 수요를 충족시키기 위해서 표준화, 대량 생산화가 가능한 건식 공법이 각광을 받고 있다. 이러한 현실에 부응하여 에너지 절감효과 및 공사기간 단축, 다양한 형태로 적용이 가능하고 경제성을 가지는 샌드위치 패널이 많이 사용되고 있다. 샌드위치 패널의 형태는 양면 도장 강판 사이에 유기계 및 무기계 단열재를 합성한 복합 자재이다. 유기계 단열재는 PUR(Poly-uretane foam) 및 EPS(Expanded poly-stylene foam) 등이 사용되며, 무기계 단열재는 Glass wool 및 Mineral wool 등이 사용된다. 유기계 단열재는 화재 시 불이 잘 붙어 대피할 수 있는 시간 부족과 유독가스의 발생으로 인명피해가 크게 발생할 수 있지만, 무기계보다 가격이 싸서 유기계 재료를 사용한 샌드위치 패널이 많이 사용되고 있다. 반면, 무기계 단열재 중 경량기포콘크리트는 단열성과 내화성, 경량성 등이 뛰어나기 때문에 샌드위치 패널에 적용하여 유기계의 단점을 해결하기 위한 많은 연구가 수행되어져 왔다. 단열성 및 내화성, 경량성이 뛰어난 경량기포콘크리트는 기포제를 활용하여 시멘트 경화체 내에 다량의 공극을 발생시켜 제조한 것으로서 역학적 특성은 사용되는 기포제와 발포제의 종류에 따라 많은 영향을 받게 된다. 기포제는 계면활성작용에 의해 물리적으로 기포를 도입하는 것으로써 공기량은 최고 85%까지 생성될 수 있으며, 크게 계면활성제계, 가수분해 단백질계로 구분될 수 있다. 계면활성제계 기포제는 수용액 상에서 기포시키면 안정되고, 점성이 높은 기포가 생기지만 시멘트 슬러리와 혼합 시 안정성이 저하되어 서로 연속된 형태의 기포를 형성한다. 가수분해 단백질계 기포제는 계면활성제계 기포제와는 달리 시멘트 슬러리와 혼합 시 안정되고 서로 독립적인 형태의 기포를 형성하게 된다. 발포제는 금속분말이 알칼리 용액과 접촉하여 수소가스를 발생시키는 원리를 이용하는 것으로써 현재 Autoclaved Light-Weight Concrete(ALC)의 제조에 사용되고 있다. 이와 같이 경량기포콘크리트 제조에 사용되는 기포제 및 발포제는 특성이 각기 다르기 때문에 내부 공극이 변화되고 이에 따라 경량기포콘크리트의 물리적, 단열특성이 변화될 것으로 예상된다. 따라서 본 연구에서는 기포제와 발포제를 사용한 경량기포콘크리트를 샌드위치 패널의 내부 단열재로 활용하는 기초적자료를 제공하기 위한 실험적 연구를 수행하였다. 즉, 경량기포콘크리트를 제조하는데 가장 일반적으로 사용하고 있는 기포제 및 발포제를 대상으로 하여 각각의 첨가량에 따른 경량기포콘크리트의 기포구조 및 열적특성을 검토함으로써 경량기포콘크리트의 높은 단열성능을 확보하기 위한 최적조건을 제시하기 위한 실험 실증적 연구를 수행하였다.

경량(輕量)콘크리트의 제조(製造)와 그 성질(性質)에 관(關)한 연구(硏究) (Studies on the Production and Property of Light Weight Concrete)

  • 김성완;강신업;조성섭;성찬용
    • 농업과학연구
    • /
    • 제10권2호
    • /
    • pp.310-323
    • /
    • 1983
  • 본연구(本硏究)는 기포제(起泡劑)가 경량(輕量) 콘크리트의 제조(製造)와 그 성질(性質)에 미치는 영향(影響)을 연구(硏究)하기 위하여 기포(起泡) 모르터의 압축(壓縮), 인장(引張) 및 휨 강도시험(强度試驗)과 흡수율시험(吸水率試驗)을 배합별(配合別), 기포제별(起泡劑別)로 실시(實施)하였으며, 본(本) 시험(試驗)의 결과(結果)를 요약(要約)하면 다음과 같다. 1. 압축(壓縮), 인장(引張) 및 휨 강도(强度)는 각기포제(各起泡劑)에서 빈배합(貧配合)보다 부배합(富配合)일수록, 기포제첨가량(起泡劑添加量)이 증가(增加)할수록 저하(低下)하는 경향(傾向)을 보였고, 기포제첨가량(起泡劑添加量)이 0.75%에서 강도저하(强度低下)가 크게 나타났으며, 강도(强度)의 저하율(低下率)은 J. A, D 기포제(起泡劑) 순(順)으로 높게 나타났다. 2. 배합비(配合比) 1:1, ${\sigma}_{28}$, 기포제첨가량(起泡劑添加量) 0.75%에서 압축강도(壓縮强度)가 기포제(起泡劑) D는 34.9%, 기포제(起泡劑) A는 47.8%, 기포제(起泡劑) J는 86.8%의 감소(減少)를 나타내고 있으며, 인장강도(引張强度)에서 기포제(起泡劑) D는 14.8%, 기포제(起泡劑) A는 20.2%, 기포제(起泡劑) J는 77.9%의 감소(滅少)를 나타내었고, 휨 강도(强度)에 기포제(起泡劑) D는 19.9%, 기포제(起泡劑) A는 35.0%, 기포제(起泡劑) J는 79.1%의 감소(減少)를 보이고 있어, 압축강도(壓縮强度)가 인장강도(引張强度) 및 휨 강도(强度)에 비(比)하여 강도(强度)의 저하율(低下率)이 높게 나타나는 경향(傾向)을 보였다. 3. 흡수율(吸水率)은 각기포제(各起泡劑)에서 부배합(富配合)보다 빈배합(貧配合)일수록, 기포제첨가량(起泡劑添加量)이 증가(增加)할수록 높게 나타나는 경향(傾向)을 보였고, 각배합(各配合)에서 수침초기(水浸初期)에 흡수율(吸水率)이 높게 나타났으며, J, A, D 기포제(起泡劑) 순(順)으로 흡수율(吸水率)이 높게 나타났다. 4. 시멘트 모르터에 기포제(起泡劑)를 첨가(添加)하였을 때 강도저하(强度低下)는 부득이(不得已)한 것이지만 경량성(輕量性), 단열성(斷熱性), 보온성(保溫性), 방음성(防音性), 내화성(耐火性)을 기대(期待)할 수 있기 때문에 저강도(低强度)를 요(要)하는 곳에 이용(利用)이 가능(可能)하다고 생각된다.

  • PDF

기포제 종류 및 희석 농도에 따른 기포 콘크리트의 특성 (Properties of Foamed Concrete According to Types and Concentrations of Foam Agent)

  • 김진만;정지용;황의환;신상철
    • 콘크리트학회논문집
    • /
    • 제24권1호
    • /
    • pp.61-70
    • /
    • 2012
  • 최근 정부는 '저탄소 녹색성장 기본법'을 시행하여 국가 총체적 차원에서 에너지 절감, 온실가스 저감을 위한 노력을 기울이고 있다. 건물부문에서는 건물외피와 단열재의 열적 특성을 검토하여 건물 자체의 단열성능을 높임으로써 에너지를 절감할 수 있다. 이 연구는 건물부문의 에너지 절감을 목적으로 건물에 적용 가능한 경량기포 콘크리트 단열패널을 개발하기 위한 연구로서, 기포제 종류(AES, AOS, VS, FP)와 기포제 희석농도(1%, 3%, 5%), 기포율(30%, 50%, 70%)에 따른 기포 콘크리트의 물리·역학적 특성 및 열적 특성을 검토하여 에너지 절감을 위한 단열재로서의 최적조건을 찾고자 하였다. 실험 결과, 발포율에 영향을 미치는 기포제가 포함된 수용액의 표면장력은 AOS를 사용한 경우가 다른 기포제를 사용한 경우보다 낮게 나타났다. FP는 표면장력의 저하량이 크지 않고 발포율이 낮기 때문에 저농도로 희석한 경우 다량의 수분을 함유하고 있는 안정적이지 못한 기포가 생성되어 3% 이상 사용하여야만 비교적 안정적인 기포를 만드는 것이 가능하였다. 또한, 압축강도와 열전도율은 저밀도 영역에서는 기포제 종류에 따른 차이는 발생하지 않았으나, 상대적으로 고밀도영역에서 압축강도는 AOS와 FP, 열전도율은 VS와 FP가 더 효과적인 것으로 나타났다. 또한, 기포농도와 기포율이 증가할수록 공극 크기는 커지며 열린공극을 형성하는 것으로 나타났으며 모든 기포제에 대한 열전도율은 KS기준을 만족하여 우수한 단열재로서의 가능성을 보였다. 종합적인 분석 결과, FP를 농도 3%로 사용하여 제조한 시험체가 건물에 적용시 기포 콘크리트 단열패널로서 가장 우수한 성능을 발현할 것으로 판단된다.

기포제(起泡劑)를 사용(使用)한 모르터의 제특성(諸特性)에 관(關)한 연구(硏究) (A Study on the Characteristics of Mortar Using Foaming Agents)

  • 성찬용
    • 농업과학연구
    • /
    • 제15권1호
    • /
    • pp.82-94
    • /
    • 1988
  • 이 논문(論文)은 기포(起泡)모르터의 제특성(諸特性)에 관(關)한 기초자료(基礎資料)를 제공(提供)하고져 수행(遂行)되었는 바, 이 연구(硏究)를 통(通)하여 얻어진 결과(結果)를 요약(要約)하면 다음과 같다. 1. 각(各) 기포(氣泡)모르터에서 물-시멘트비는 당배합비(富配合比)일수록, 기포제(起泡劑) 및 기포(氣泡)의 첨가량(添加量)이 증가(增加)할수록 감소(減少)하였으며, 보통(普通)시멘트 모르터에 비(比)하여 혼합기포주입형(混合氣泡注入型)은 1.6~53.1%, 사전기포주입형(事前氣泡注入型)은 4.4~24.1%의 물-시멘트비(比)가 감소(減少)되었다. 2. 각(各) 기포(氣泡)모르터의 밀도(密度)는 빈배합(貧配合)일수록, 기포제(起泡劑) 및 기포(氣泡)의 첨가량(添加量)이 증가(增加)할수록 작게 나타났으며, 밀도(密度)의 감소율(減少率)은 당배합(富配合)일수록, 기포제(起泡劑) 및 기포(氣泡)의 첨가량(添加量)이 증가(增加)할수록 크게 나타났다. 3. 기포(起泡)모르터는 보통(普通)시멘트 모르터에 비(比)하여 혼합기포주입형(混合氣泡注入型)은 38.8~55.9%, 사전기포주입형(事前氣泡注入型)은 9.7~23.6%의 자중감소(自重減少)를 보였다. 4. 각(各) 기포(起泡)모르터의 급수율(吸水率)은 빈배합(貧配合)일수록, 기포제(起泡劑) 및 기포(氣泡)의 첨가량(添加量)이 증가(增加)할수록 높게 나타났으며, 흡수율(吸水率)의 증가율(增加率)은 당배합(富配合)일수록, 기포제(起泡劑) 및 기포(氣泡)의 첨가량(添加量)이 증가(增加)할수록 크게 나타났다. 5. 72시간(時間) 수침(水浸)에서 각(各) 기포(氣泡)모르터의 흡수율(吸水率)은 보통(普遇)시멘트 모르터에 비(比)하여 혼합기포주입형(混合氣泡注入型)은 3.41~5.85배(倍)로 나타났으며, 사전기포주입형(事前氣泡注入型)은 1.05~1.55배(倍)로 나타났으며, 흡수율(吸水率)의 변화율(變化率)은 모두 수침초기(水浸初期)에 높게 나타나는 경향(傾向)을 보였다. 6. 각(各) 기포(氣泡)모르터의 각(各) 강도(强度)는 빈배합(貧配合)일수록, 기포제(起泡劑) 및 기포(氣泡)의 첨가량(添加量)이 증가(增加)할수록 작게 나타났으며, 각(各) 강도(强度)의 감소율(減少率)은 빈배합(貧配合)일수록, 기포제(起泡劑)나 기포(氣泡)의 첨가량(添加量)이 증가(增加)할수록 크게 나타났다. 7. 기포(氣泡)모르터는 보통(普通)시멘트 모르터에 비(比)하여 재령(材齡) 28일(日)에서 혼합기포주입형(混合氣泡注入型)은 77.0~92.8%, 사전기포주입형(事前氣泡注入型)은 36.7~74.4%의 강도감소(强度減少)를 보였고, 각(各) 기포(氣泡)모르터의 각(各) 강도간(强度間)의 상관관계(相關關係)는 직선형(直線形)으로 나타났으며 고도(高度)의 유의성(有意性)이 인정(認定)되었다. 8. 각(各) 기포(氣泡)모르터의 공기량(空氣量)은 빈배합(貧配合)일수록, 기포제(起泡劑)나 기포(氣泡)의 첨가량(添加量)이 증가(增加)할수록 크게 나타났으며, 공기량(空氣量)이 증가율(增加率)은 당배합(富配合)일수록, 기포제(起泡劑)나 기포(氣泡)의 첨가량(添加量)이 증가(增加)할수록 높게 나타났다. 9. 기포(氣泡)모르터의 공기량(空氣量)은 보통(普通)시멘트 모르터에 비(比)하여 혼합기포주입형(混合氣泡注入型)은 26.0~63.8배(倍), 사전기포주입형(事前氣泡注入型)은 5.8~17.7배(倍)를 보였다. 10. 각(各) 기포(氣泡)모르터에서 밀도(密度)와 흡수율(吸水率), 압축강도(壓縮强度) 및 공기량(空氣量)과의 상관관계(相關關係)는 매우 높은 유의성(有意性)을 보였고, 배합비(配合比)와 기포제(起泡劑) 및 기포(氣泡)의 첨가량(添加量)에 따라 밀도(密度), 흡수율(吸水率), 제강도(諸强度) 및 공기량(空氣量)을 추정(推定)할 수 있는 다중회귀방정식(多重回歸方程式)을 유도(誘導)하였으며 각(各) 방정식(方程式)은 고도(高度)의 유의성(有意性)이 인정(認定)되었다.

  • PDF

기포제(起泡劑)가 모르터의 특성(特性)에 미치는 영향(影響) (Effects of Foaming Agent on the Characteristic of Mortar)

  • 김성완;강신업;조성섭;성찬용
    • 농업과학연구
    • /
    • 제11권1호
    • /
    • pp.133-145
    • /
    • 1984
  • 본(本) 연구(硏究)는 기포제(起泡劑)가 모르터의 특성(特性)에 미치는 영향(影響)을 연구(硏究)하기 위(爲)하여 기포(氣泡) 모르터의 물-시멘트 비(比)시험(試驗)과 밀도시험(密度試驗)을 배합별(配合別), 기포제별(起泡劑別)로 실시(實施)하였으며, 그 결과(結果)를 요약(要約)하면 다음과 같다. 1. 물-시멘트비(比)는 배합비(配合比) 1 : 4, G, U 및 J 기포제(起泡劑) 첨가량(添加量) 0.5%에서 90.0%, 88.3% 및 70.0%로 가장 크게 나타났으나, 보통(普通)모르터의 물-시멘트비(比) 91.6%보다는 작게 나타났다. 2. 물-시멘트비(比)의 감소율(減少率)은 보통(普通)모르터에 비(比)하여 G 및 U 기포(氣包)모르터에서 배합비(配合比) 1 : 3, 기포제(起包劑) 첨가량(添加量) 3.0%일 때 22.0%와 24.1%로 가장 크게 나타났고, 이 보다 부배합(富配合)이나 빈배합(貧配合)일수록 작게 나타났다. 또한 J 기포제(起包劑)에서는 배합비(配合比) 1 : 4, 기포제(起包劑) 첨가량(添加量) 3.0%에서 물-시멘트 비감소율(比減少率)이 53.1%로 가장 크게 나타났고 이보다 부배합(富配合) 일수록 작게 나타났다. 3. 밀도(密度)는 배합비(配合比) 1 : 1, G, U 및 J 기포제(起包劑) 첨가량(添加量) 0.5%에서 $1.981g/cm^3$, $1.863g/cm^3$$1.149g/cm^3$로 가장 크게 나타났으나, 보통(普通)모르터의 밀도(密度) $2.048g/cm^3$보다는 작게 나타났다. 4. 밀도(密度)의 감소율(減少率)은 보통(普通)모르터에 비(比)하여 G, U 및 J 기포(氣泡)모르터에서 배합비(配合比) 1 : 2, 기포제(起包劑) 첨가량(添加量) 3.0%일 때 20.7%, 23.7% 및 56.5%로 가장 크게 나타났으나, 이보다 부배합(富配合)이거나 빈배합(貧配合)일수록 밀도(密度)의 감소율(減少率)은 작게 나타났다. 5. 물-시멘트비(比)와 밀도(密度)는 기포제(起泡劑)의 첨가량(添加量)이 증가(增加)할수록 감소(減少)되었으며, 또한 배합비(配合比)와 기포제(起包劑) 첨가량(添加量)에 따라 물-시멘트비(比)와 밀도(密度)를 추정(推定)할 수 있는 다중회귀방정식(多重回歸方程式)도 유도(誘導)되었다.

  • PDF

이미지 분석시스템을 이용한 부선컬럼에서 기포크기의 측정 (Measurement of Bubble Size in Flotation Column using Image Analysis System)

  • 안기선;전호석;박철현
    • 자원리싸이클링
    • /
    • 제29권6호
    • /
    • pp.104-113
    • /
    • 2020
  • 기포크기는 컬럼부선에서 기포체류시간, 기포표면적플럭스(Sb) 및 운송율(Cr)에 영향을 미치는 중요 변수로 인식되고 있다. 본 논문은 부선컬럼에서 기포크기의 측정방법, 가동변수들의 관계 그리고 가스분산특성을 논한다. 기포크기는 고속카메라와 이미지 분석 시스템을 이용하여 가동변수들(가스속도, 세척수속도, 기포제농도)의 조건에 따라 부선컬럼에서 직접적으로 측정되었다. 각 측정과 산정된 기포크기 값들을 비교한 관계식이 ±15~20의 오차범위 내에서 도출되었고 평균 기포크기(Sauter mean diameter)는 0.718mm로 확인되었다. 본 시스템으로부터 기포크기 및 분포를 조절할 수 있는 경험식이 가동조건들(Jg: 0.65~1.3cm/s, JW: 0.13~0.52cm/s, frother concentration: 60~200ppm) 하에서 개발되었다. 기포제농도의 증가는 표면장면과 기포크기를 감소시킨다. 임계병합농도는 표면장력이 가장 낮은 49.24mN/m일 때인 기포제농도 200ppm이라고 판단된다. 공기속도의 감소, 기포제농도 및 세척수속도의 증가에 따라 기포크기가 감소하는 경향을 보였다. 가스홀드업은 가스속도와 비례관계에 있으며 고정된 가스속도 조건에서 기포제농도 및 세척수속도와 비례관계였다.

화상 이미지 기반 FEM 해석을 이용한 기포제 혼입 시멘트 페이스트의 역학 성능 평가 (Mechanical Performance Evaluation of Cement Paste with Foaming Agent using FEM Analysis Based on Picture Image)

  • 김보석;신준호;이한승
    • 한국건축시공학회지
    • /
    • 제16권1호
    • /
    • pp.35-43
    • /
    • 2016
  • 콘크리트는 대표적인 불균질 재료이며 콘크리트의 역학적 특성은 다양한 요인들에 의해 영향을 받는다. 그 중 콘크리트 내부에 존재하는 공극은 콘크리트의 강도를 결정하는데 많은 영향을 주고 있기 때문에 공극의 분포 및 크기를 파악하는 연구는 매우 중요하며 그 방법으로 화상이미지를 이용한 연구가 대두되고 있다. 경량 기포 콘크리트는 현재 비구조용에 관한 연구만 진행되고 있기 때문에, 구조용으로 사용하기 위한 경량 기포 콘크리트의 역학적 특성을 평가하고 화상 이미지를 기반으로 FEM 해석을 이용한 검증에 관한 연구는 미비하다. 그러므로 기포제 혼입률에 따른 시멘트 페이스트를 제작하여 역학적 성능 평가를 실시하고 화상 이미지를 이용하여 FEM 해석을 실시하여 역학적 성능 비교 및 검증을 실시하였다. 본 연구에서 기포제 혼입률에 따른 공극 분포를 확인하기 위해 7수준으로 하였으며 추 후 구조용 경량 기포 콘크리트에 대한 연구를 진행하기 위해 물-결합재비를 20%로 하였다. 기포제 혼입률이 0.8%에서 단위 용적 질량이 최소가 되었으며 그 이상 혼입했을 시 기포 간의 상호 연결로 인한 깨짐 현상이 발생하여 단위 용적 질량이 증가하였다. 공극 분포에 따른 FEM 해석을 위해 화상분석기(HF-MA C01)를 이용하여 시멘트 페이스트 단면을 촬영하였고 이를 토대로 OOF(Object Oriented Finite elements)를 이용한 FEM 해석을 실시한 결과 실험 탄성계수와 해석 탄성계수가 일치하였다.

액체내에서의 기포형성 모델

  • 곽호영
    • 기계저널
    • /
    • 제23권4호
    • /
    • pp.280-287
    • /
    • 1983
  • 본 해설에서는 전자 즉 용액내에서 용해되어 있는 기체 분자의 모임에 의한 기포형성에 대해 다루려고 한다. 제 2절에는 Becker-Doring에 의한 고전이론과 그 문제점을 다루고 3절에서는 새로운 관점에서 본 용액내에서 기포를 형성하는 데 필요한 표면 에너지를, 4절에서는 기포형 성에 대한 열역학적인 면에서의 고찰, 5절에서는 용액내에서의 기포형성 모델에서 기포형성을 위한 압력강하를 구하는 방법의 종류와 그 온도에 따른 기포형성에 대해 논하기로 하고 증기로된 기포형성(vapor bubble formation)에 대하여는 다음 기회에 논하기로 한다.

  • PDF

단열재용 폴리우레탄 미세포 포움의 가공 (Processing of Polyurhane Microcellular Foam for Thermal Insulation)

  • 윤재륜
    • 유변학
    • /
    • 제9권4호
    • /
    • pp.190-199
    • /
    • 1997
  • 단열용도의 폴리우레탄 미세포 포움의 가공에 대한 연구를 수행하였다. 미세포 구조 를 얻기 위해서는 핵생성율을 증진시키고 균일한 분포의 기포를 생성시켜야 한다. 이를 위 해 이산화탄소 기체를 풀리올과 이소시아네이트에 각각 과포화시키고 충돌혼합하여 초음파 가진을 적용하였다. 이산화탄소 기체가 수지 내부에서 기포 내부로 확산함에 따라 기포의 성장이 조절된다고 가정하고 금형이 충전되는 동안에 금형 내부에서의 기포성장기구를 이해 하기 위하여 수치적인 방법으로 이론적 연구를 수행하였다. 경화 시간과 확산 경계를 고려 하여 최종적인 기포의 크기를 계산하였으며 반응속도론을 고려하여 중합반응동안의 폴리우 레탄의 점도의 변화를 예측하고 경화 시간을 결정하였다. 실험적으로 결정된 기체 분자수를 기준으로 하여 이론적으로 확산경계를 예측하였다. 화학적 발포제인 물과 함께 물리적 발포 제인 이산화탄소를 각각 1,2,3기압의 포화압력으로 변화시키면서 폴리올과 이소시아네이트에 포화시켜 폴리우레탄 포움을 제작하고 제작된 포움의 밀도, 열전도도, 및 기포의 수와 지름 을 측정하였다. 측정된 결과로부터 이산화탄소의 포화압력과 초음파 가진이 포움의 기포핵 생성에 미치는 영향을 살펴보았다.

  • PDF