• Title/Summary/Keyword: 기초통계학

Search Result 82, Processing Time 0.02 seconds

A prediction model for adolescents' skipping breakfast using the CART algorithm for decision trees: 7th (2016-2018) Korea National Health and Nutrition Examination Survey (의사결정나무 CART 알고리즘을 이용한 청소년 아침결식 예측 모형: 제7기 (2016-2018년) 국민건강영양조사 자료분석)

  • Sun A Choi;Sung Suk Chung;Jeong Ok Rho
    • Journal of Nutrition and Health
    • /
    • v.56 no.3
    • /
    • pp.300-314
    • /
    • 2023
  • Purpose: This study sought to predict the reasons for skipping breakfast by adolescents aged 13-18 years using the 7th Korea National Health and Nutrition Examination Survey (KNHANES). Methods: The participants included 1,024 adolescents. The data were analyzed using a complex-sample t-test, the Rao Scott χ2-test, and the classification and regression tree (CART) algorithm for decision tree analysis with SPSS v. 27.0. The participants were divided into two groups, one regularly eating breakfast and the other skipping it. Results: A total of 579 and 445 study participants were found to be breakfast consumers and breakfast skippers respectively. Breakfast consumers were significantly younger than those who skipped breakfast. In addition, breakfast consumers had a significantly higher frequency of eating dinner, had been taught about nutrition, and had a lower frequency of eating out. The breakfast skippers did so to lose weight. Children who skipped breakfast consumed less energy, carbohydrates, proteins, fats, fiber, cholesterol, vitamin C, vitamin A, calcium, vitamin B1, vitamin B2, phosphorus, sodium, iron, potassium, and niacin than those who consumed breakfast. The best predictor of skipping breakfast was identifying adolescents who sought to control their weight by not eating meals. Other participants who had low and middle-low household incomes, ate dinner 3-4 times a week, were more than 14.5 years old, and ate out once a day showed a higher frequency of skipping breakfast. Conclusion: Based on these results, nutrition education targeted at losing weight correctly and emphasizing the importance of breakfast, especially for adolescents, is required. Moreover, nutrition educators should consider designing and implementing specific action plans to encourage adolescents to improve their breakfast-eating practices by also eating dinner regularly and reducing eating out.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.