• Title/Summary/Keyword: 기체 방사성 물질

Search Result 43, Processing Time 0.025 seconds

Practical Radiation Safety Control: (II) Application of Numerical Guidance for the Discharges of Radioactive Gaseous and Liquid Effluents (방사선안전관리 실무: (II) 배기중 및 배수중 배출관리기준의 적용)

  • Kim, Hyun Kee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.61-64
    • /
    • 2014
  • Radioactive materials are in use and have many applications from the generation of electricity to the purposes of research, industry and medicine such as diagnosis and therapy. In the course of their use some of radioactive substances may be discharged into the environment from facilities using the unsealed radioactive materials, which are main artificial sources occurring the public exposure. Discharges are in the form of gases, particles or liquids. This paper provides procedures to estimate the level of the public exposure based on the conservative assumptions and simple calculations in the facility using unsealed liquid sources. They consist of two processes; (1) to calculate maximum concentration of gaseous effluents discharged through the exhaust pipe and average concentration of liquid effluents discharged through the drain of the storage tank, (2) to compare each of them to numerical guidances for the discharges of radioactive gaseous and liquid effluents mentioned in the related notification. For this purpose followings are assumed properly; daily usage, form and dispersion rate of radionuclides, daily amount of radioactive liquid waste and exhaust and drainage equipment. The procedures are readily applicable to evaluate environmental effects by planned effluent discharges from facilities using the unsealed radioactive materials. In addition they may be utilized to obtain practical requirements for radiation safety control necessary for the reductions of the public exposure.

플라즈마트론을 이용한 금속 방사성 폐기물 제염처리연구

  • Yang, Ik-Jun;Yang, Jong-Geun;Kim, Seung-Hyeon;SURESH, RAI;Ahmed, M.W.;Shaislamov, Ulugbek;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.116.1-116.1
    • /
    • 2015
  • 원자력 발전소 고리 1호기의 해체가 결정됨에 따라 발전소를 구성한 금속기기의 제염처리가 대두되고 있다. 금속 방사성폐기물 중 상당수는 그 자체가 방사성 오염 물질이라기보다는 오염 핵종이 표면에 부착하고 있는 경우가 많아 제염 공정을 거쳐 폐기한다면 보관해야 하는 양을 획기적으로 줄일 수 있을 것이다. 이에 따라 본 연구실에서는 플라즈마트론을 이용한 방사성 폐기물 건식제염처리에 대하여 연구하였다. 본 실험에서는 방사성을 띄지 않는 동위원소 Co sheet와 DC 플라즈마트론을 사용하였다. Ar 1000 sccm을 고정으로 비율(10:0, 9:1, 8:2, 7:3, 6:4), 거리(20 mm, 30 mm 40 mm), 시간(60 sec, 120 sec, 180 sec)을 변수로 두어 실험하였다. 결과적으로 기체의 혼합비가 4:1일 때 최대 식각율 $9.24{\mu}m/min$을 확인했다.

  • PDF

Analysis of Radiation Exposure from Nuclear Reactor Accident in Complex Terrain (산악지형에서의 원자력발전소 사고시의 피폭해석)

  • Moon Hee Han;Sung Ki Chae;Moon Hyun Chun
    • Nuclear Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.216-223
    • /
    • 1985
  • The Gaussian plume model is widely used to calculate the concentrations of gaseous radioactive effluents in the atmosphere. This model assumes that the terrain is flat, so that the dispersion coefficients which are the most important parameters in this model must be compensated in complex terrain such as in Korea. In this study the compensation of vertical dispersion coefficient in two dimensional x-z plane has been accomplished by comparing the Gaussian plume model with numerical model. The results show that the concentractions of radioactive effluents over complex terrain are more dilluted than those expected over flat terrain.

  • PDF

Decontamination Performance Assessment for the Plasma Arc Vitrification pilot plant on the basis of Trial Burn Results(I) - Decontamination Characteristics for Hazardous Metal, Radioactive surrogate and Radioactive Tracer in Off-gas (시험연소결과에 근거한 플라즈바 아크방식 유리화 시험 설비의 제염성능 평가(I) - 배기가스중의 유해중금속, 방사성핵종 모의물질 및 방사성핵종 제염특성 -)

  • Chae, Gyung-Sun;Park, Youn-Hwan;Min, Byong-Yun;Chang, Jae-Ock;Park, Jun-Yong;Jeong, Weon-Ik;Moon, Byung-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.99-107
    • /
    • 2000
  • Through the results of off-gas analysis at 3 sampling points in Plasma Arc Melting vitrification pilot plant, it was evaluated the partitioning of spiked materials in off-gas and the decontamination characteristic of off-gas treatment system. Spiked materials are hazard_us heavy metals(Pb, Cd, Hg), radioactive surrogate(Co, Cs) and radioactive materials($^{60}Co,\;^{137}Cs$). Through the Trial burn tests, Decontamination factor of spiked materials in off-gas treatment system is calculated.

  • PDF

Comparison of Radiation Exposures from Coal-fired and Nuclear Power Plants (석탄발전과 원자력발전에 의한 방사선피폭 비교 연구)

  • Han, Moon-Hee;Kim, Byung-Woo;Yoo, Byung-Sun;Lee, Jeong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 1987
  • Comparison study on the radiological effects by radionuclides from hypothetical 1,000MWe coal-fired power station and nuclear power plant is made. This paper describes the radiological effects only for gaseous effluents released in normal operation. Source terms for coal-fired Power station are quoted from foreign data and those for nuclear power plant are calculated for reference power plant. Gaussian plume model is used to assess atmospheric dispersion of radioactive effluents based on one year meteorological data of Kori site and individual doses are calculated at the maximum X/Q point. Doses from nuclear power plant are slightly more than those from coal-fred power plant. In the case of coal-fired power plant, doses by ingestion of contaminated vegetation are 73.5% of total doses.

  • PDF

A Study on Annual Release Objectives and Annual Release Limits of Gaseous Effluents During Decommissioning of Nuclear Power Plants (원전 해체 시 기체상 유출물의 연간 방출관리치 및 방출한도치에 관한 연구)

  • Lee, Seung-Hee;Hwang, Won-Tae;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.299-311
    • /
    • 2019
  • Decommissioning is a critical issue in Korea. Although compared with the operation of nuclear power plants the release of radioactive materials during decommissioning is not expected to be significant, residents should always be protected from radiation exposure. To manage this effectively, Annual Release Objectives (ARO) and Annual Release Limits (ARL) were derived from dose standards in the NSSC Notice and dose limit for the public. Based on meteorological data for the three years from 2008 to 2010 in the Shin Kori nuclear power plant site, atmospheric dispersion and ground deposition factors of gaseous effluent were evaluated using the XOQDOQ computer code. The exposure dose was evaluated using the ENDOS-G computer code. Because of differences in radiological sensitivity according to age groups, the results of Annual Release Objectives (ARO) and Annual Release Limits (ARL) showed significant differences depending on the radionuclides. The evaluation methodology of this study will provide meaningful information for radioactive effluent management for decommissioning of nuclear power plants.

원자력발전소 1차계통 탈염기 제염계수 특성 분석

  • 성기방;강덕원
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.387-391
    • /
    • 1997
  • 냉각재중의 방사능을 띤 성분 중에는 이온교환기에서 제거가 가능한 이온성분과 함께 필터에 의해서 주로 제거되는 입자성 물질로 존재한다. 운전중의 냉각재내 방사성 부식생성물의 물리적 조성 분포 측정 결과에 따르면 90%이상이 0.45$mu extrm{m}$필터에 의해 제거되는 입자성 물질로 구성되어 있다. 이로 인해 새수지 충전후 얼마 사용하지 않은 탈염기의 제염계수가 탈염기에서 완벽한 제거가 어려운 입자성 부식생성물로 인해 10이하를 나타낼 수 있다. 1차계통에 쓰이는 수지의 성능검사를 위해 사용하고 있는 현재의 제염계수 측정법은 다음과 같은 두가지 이유로 완벽하지 않음을 알 수 있다. 첫째, 냉각재중의 방사능을 띤 성분중에는 이온교환기에서 제거가 가능한 이온성분과 함께 필터에 의해 제거되는 입자성 물질도 함께 존재하므로 탈염기의 제염계수 측정 절차는 입자성 물질을 배제한 후 측정해야 하며, 특히 수치 교체를 결정하기 위한 제염계수 측정시에는 여과된 여액으로 방사능 농도를 측정하는 것이 바람직하다. 둘째 운전중인 냉각재의 시료중에는 핵분열 수율이 높고 핵연료봉 손상부위로 유출이 용이한 불활성 기체핵종들이 많이 존재하며, 탈염기 후단에서 채취한 시료중에도 많이 존재하고, 시료 이송과 방사능 측정동안의 짧은 시간동안에도 계속 붕괴반응함으로서 새로 생긴 핵종으로 인해 마치 탈염기의 제거능이 낮은 것으로 오판될 수 있다. 이러한 측정 오차인자를 고려하여야 1차계통 탈염기의 교환능력을 정확히 판정할 수 있다.

  • PDF

An Effective Block of Radioactive Gases for the Storage During the Synthesis of Radiopharmaceutical (방사성의약품 합성에서 발생하는 방사성기체의 효율적 차단)

  • Chi, Yong Gi;Kim, Dong Il;Kim, Si Hwal;Won, Moon Hee;Choe, Seong-Uk;Choi, Choon Ki;Seok, Jae Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.126-130
    • /
    • 2012
  • Purpose : Methode an effective block was investigated to deal with volatile radioactive gas, short lived radioactive waste generated as a result of the routinely produced radiopharmaceuticals FDG (2-deoxy-2-[$^{18}F$]fluoro-D-glucose) and compound with $^{11}C$. Materials and Methods : All components of the radiation stack monitoring and data management system for continuous radioactive gas detection in the air extract system purchase from fixed noble gas monitor of Berthold company. TEDLAR gas sampling bags purchase from the Dongbanghitech company. TEDLAR gas sampling bags (volume: 10 L) connected via paraflex or PTFE tubing and Teflon 3 way stopcock. When installing TEDLAR gas sampling bags in Hot cell on the inside and not radioactive gas concentrations were compared. According to whether the Hot cell inside a activated carbon filter installed, compare the difference in concentration of the radioactive gas $^{18}F$. Comparison of radiation emission concentration difference of module a FASTlab and TRACElab. Results : Activated carbon filter are installed in the Hot cell, a measure of the concentration of radioactive gas was 8 $Bq/m^3$. Without activated carbone filter in the hot cell was 300 $Bq/m^3$. Tedlar bag prior to installation of the radioactive gases a measure of the concentration was 3,500 $Bq/m^3$, $^{11}C$ synthesis of the measured concentration was 27,000 $Bq/m^3$. After installed a Tedlar bag and a measure concentration of the radioactive gases was 300 $Bq/m^3$ and $^{11}C$ synthesis was 1,000$Bq/m^3$. Conclusion : $^{11}C$ radioactive gas that was ejected out of the Hot cell, with the use of a Tedlar gas sampling bag stored inside. A compound of 11C is not absorbed onto activated carbon filter. But can block the release out by storing in a Tedlar gas sampling bag. We was able to reduce the radiation exposure of the worker by efficient radiation protection.

  • PDF

Gas Injection Experiment to Investigate Gas Migration in Saturated Compacted Bentonite (포화 압축 벤토나이트 내 기체 이동 현상 관측을 위한 기체 주입 시험)

  • Jung-Tae Kim;Changsoo Lee;Minhyeong Lee;Jin-Seop Kim;Sinhang Kang
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.89-103
    • /
    • 2024
  • In the disposal environment, gases can be generated at the interface between canister and buffer due to various factors such as anaerobic corrosion, radiolysis, and microbial degradation. If the gas generation rate exceeds the diffusion rate, the gas within the buffer may compress, resulting in physical damage to the buffer due to the increased pore pressure. In particular, the rapid movement of gases, known as gas breakthroughs, through the dilatancy pathway formed during this process may lead to releasing radionuclide. Therefore, understanding these gas generation and movement mechanism is essential for the safety assessment of the disposal systems. In this study, an experimental apparatus for investigating gas migration within buffer was constructed based on a literature review. Subsequently, a gas injection experiment was conducted on a compacted bentonite block made of Bentonile WRK (Clariant Ltd.) powder. The results clearly demonstrated a sharp increase in stress and pressure typically observed at the onset of gas breakthrough within the buffer. Additionally, the range of stresses induced by the swelling phenomenon of the buffer, was 4.7 to 9.1 MPa. The apparent gas entry pressure was determined to be approximately 7.8 MPa. The equipment established in this study is expected to be utilized for various experiments aimed at building a database on the initial properties of buffer and the conditions during gas injection, contributing to understanding the gas migration phenomena.

A Study on Distribution of Radon Concentration at Atmospheric in Seoul (서울 대기중 라돈농도의 분포에 관한 연구)

  • ;;;T. Iida
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.279-281
    • /
    • 2000
  • 발암성 물질로 알려진 라돈($^{222}Rn$)은 원래 불활성기체로 자연계에 널리 존재하는 자연방사능으로 암석이나 토양 같은 지각물질에서 발생하는 우라늄($^{238}U$) 붕괴계열인 라듐($^{226}Ra$)의 붕괴과정에서 생성되는 방사성 가스이다. 라돈($^{222}R$)은 $\alpha$붕괴에 의하여 $^{218}Po$, $^{214}Po$등의 자핵종(Radon daughter)을 생성하며, 최종적으로 납($^{210}Pb$)으로 변한다 라돈이 폐에 흡입되면 붕괴하면서 $\alpha$방사선을 방출하는데, 이것이 인체의 세포를 죽이거나 염색체를 손상시킬 수 있으며, 폐암의 발생 위험률을 높이는 것으로 보고되었다. (중략)

  • PDF