• 제목/요약/키워드: 기체상 유출물

검색결과 4건 처리시간 0.018초

원전 해체 시 기체상 유출물의 연간 방출관리치 및 방출한도치에 관한 연구 (A Study on Annual Release Objectives and Annual Release Limits of Gaseous Effluents During Decommissioning of Nuclear Power Plants)

  • 이승희;황원태;김창락
    • 방사성폐기물학회지
    • /
    • 제17권3호
    • /
    • pp.299-311
    • /
    • 2019
  • 최근 한국에서 원전해체는 중요한 이슈이다. 원전의 운영 시와 비교해볼 때, 원전 해체 시에는 방사성물질의 방출이 크지 않을 것으로 예상되지만, 주민은 항상 방사선피폭으로부터 보호되어야 한다. 이에 대한 효과적인 관리를 위해, 연간 방출관리치와 방출한도치를 원자력안전위원회 고시 및 일반인 선량한도 기준으로부터 유도하였다. 기체상 유출물에 의한 대기 확산 및 침적 인자는 신고리 발전소 기상탑에서 2008년부터 2010년까지 3년간 수집 된 기상자료를 토대로 XOQDOQ 컴퓨터 코드를 이용해서 평가하였다. 선량평가는 ENDOS-G 컴퓨터 코드를 사용하였다. 이 컴퓨터 코드를 이용하여 기체상 유출물의 연간 방출관리치 및 방출한도치를 평가한 결과, 핵종별로 차이가 있었는데, 이는 연령에 따른 방사선민감도의 차이에 기인한다고 할 수 있다. 본 평가 방법 및 결과는 향후 원전 해체 시 방사성유출물 관리에 중요한 정보를 제공할 수 있을 것으로 판단된다.

대덕부지 원자력관련시설 운영에 따른 주민피폭선량 현황분석 (Radiological Dose Analysis to the Public Resulting from the Operation of Daedeok Nuclear Facilities)

  • 정해선;김은한;정효준;한문희;박미선;황원태
    • Journal of Radiation Protection and Research
    • /
    • 제39권1호
    • /
    • pp.38-45
    • /
    • 2014
  • 본 연구에서는 대덕 원자력부지에 위치한 원자력관계시설들에 의한 방사선환경의 안전성을 확인하기 위해, 기체상 및 액체상 유출물에 의한 주민선량평가를 수행하였다. 이를 위해 2010년부터 2012년까지의 3년간 대덕부지의 기상자료 및 환경으로 방출된 선원항 자료를 기반으로 하여 개인 최대피폭선량을 평가, 분석하였다. 기체상 유출물의 대기확산 인자 및 침적인자는 XOQDOQ 전산코드를 이용하여 계산하였다. 기체상과 액체상 방사성물질의 방출에 의한 최대개인선량(이하 개인선량)계산은 각각 ENDOS-G와 ENDOS-L 코드를 사용하였고, 원자력안전위원회 고시 제 2012-29에 제시된 부지당 연간기준치와 비교하였다. 최대피폭지점에서의 개인의 유효선량과 갑상선선량을 계산하였고, 이에 대한 피폭영향에 미치는 기여도를 분석하였다. 그 결과, 최대 피폭연령군은 소아로 평가되었으며 하나로 운영에 의한 영향이 90% 이상 지배적인 것으로 나타났다. 또한 기체상유출물에 의한 주요피폭경로는 섭취와 호흡에 의한 것이며, 유효선량에는 삼중수소가, 갑상선 등가선량에는 방사성옥소가 가장 영향을 많이 미치는 것으로 분석되었다. 선량평가시 기체상유출물이 90% 이상 기여하였고 액체상유출물에 의한 기여도는 상대적으로 낮은 것으로 나타났다. 결과적으로, 대덕부지의 원자력관계시설들에 의한 부지 내 개인선량은 최대 기준치의 3% 이내로 평가되어 환경에 미치는 영향이 매우 적은 것으로 확인되었다.

기포탑에서 작은기포와 큰기포의 크기 구별 (Size Verification of Small and Large Bubbles in a Bubble Column)

  • 서명재;진해룡;임대호;임호;강용;전기원
    • Korean Chemical Engineering Research
    • /
    • 제50권2호
    • /
    • pp.304-309
    • /
    • 2012
  • 동력학적 기체유출방법(dynamic gas disengagement method)과 이중전기저항 탐침방법(dual electrical resistivity probe method)을 동시에 사용하여 기포탑에서 큰 기포와 작은 기포의 크기를 구별하였다. 기포탑의 일정한 운전조건에서 기포탑 내부에 체류하는 큰 기포와 작은 기포의 체류량은, 기포탑에 유입되는 기체의 유입을 차단한 후 시간의 흐름에 따른 기포탑 내부의 압력강하 변화를 측정하여 동력학적 기체유출방법에 의해 측정하였다. 기포의 크기와 빈도수는 동력학적 기체유출방법에 의해 큰 기포와 작은 기포의 체류량을 측정하는 동일한 운전조건에서 측정하였으며 이들 자료들로부터 기포의 크기에 따른 기포의 체류량을 결정하였다. 기포탑에서 큰 기포와 작은 기포의 크기결정은 동력학적 기체유출방법에 의해 얻은 큰 기포와 작은 기포의 체류량과 이중전기저항 탐침법에 의해 구한 크기의 범위를 아는 기포들의 체류량을 비교하여 결정하였다. 여과된 압축 공기와 물을 기체상과 연속액상을 사용하였으며, 기포탑의 직경은 0.102 m이고 높이는 1.5 m이었다. 기포탑에서 큰 기포와 작은 기포의 경계 크기는 4.0~5.0 mm 이었는데, 기체의 유속이 낮은 범위에서는 큰 기포와 작은 기포의 경계 크기가 5.0 mm 정도이었으나 기체의 유속이 상대적으로 큰 범위에서는 큰 기포와 작은 기포의 경계 크기가 4.0 mm 정도가 되었다.