• Title/Summary/Keyword: 기지국 고장

Search Result 12, Processing Time 0.017 seconds

CRL Distribution Method based on the T-DMB Data Service for Vehicular Networks (차량통신에서 T-DMB 데이터 서비스에 기반한 인증서 취소 목록 배포 기법)

  • Kim, Hyun-Gon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.4
    • /
    • pp.161-169
    • /
    • 2011
  • There is a consensus in the field of vehicular network security that public key cryptography should be used to secure communications. A certificate revocation list (CRL) should be distributed quickly to all the vehicles in the network to protect them from malicious users and malfunctioning equipment as well as to increase the overall security and safety of vehicular networks. Thus, a major challenge in vehicular networks is how to efficiently distribute CRLs. This paper proposes a CRL distribution method aided by terrestrial digital multimedia broadcasting (T-DMB). By using T-DMB data broadcasting channels as alternative communication channels, the proposed method can broaden the network coverage, achieve real-time delivery, and enhance transmission reliability. Even if roadside units are not deployed or only sparsely deployed, vehicles can obtain recent CRLs from the T-DMB infrastructure. A new transport protocol expert group (TPEG) CRL application was also designed for the purpose of broadcasting CRLs over the T-DMB infrastructure.

The Simulation and Research of Information for Space Craft(Autonomous Spacecraft Health Monitoring/Data Validation Control Systems)

  • Kim, H;Jhonson, R.;Zalewski, D.;Qu, Z.;Durrance, S.T.;Ham, C.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.81-89
    • /
    • 2001
  • Space systems are operating in a changing and uncertain space environment and are desired to have autonomous capability for long periods of time without frequent telecommunications from the ground station At the same time. requirements for new set of projects/systems calling for ""autonomous"" operations for long unattended periods of time are emerging. Since, by the nature of space systems, it is desired that they perform their mission flawlessly and also it is of extreme importance to have fault-tolerant sensor/actuator sub-systems for the purpose of validating science measurement data for the mission success. Technology innovations attendant on autonomous data validation and health monitoring are articulated for a growing class of autonomous operations of space systems. The greatest need is on focus research effort to the development of a new class of fault-tolerant space systems such as attitude actuators and sensors as well as validation of measurement data from scientific instruments. The characterization for the next step in evolving the existing control processes to an autonomous posture is to embed intelligence into actively control. modify parameters and select sensor/actuator subsystems based on statistical parameters of the measurement errors in real-time. This research focuses on the identification/demonstration of critical technology innovations that will be applied to Autonomous Spacecraft Health Monitoring/Data Validation Control Systems (ASHMDVCS). Systems (ASHMDVCS).

  • PDF