• Title/Summary/Keyword: 기준 강우량

Search Result 391, Processing Time 0.035 seconds

On classification model of disaster severity level based on machine learning (머신러닝 기반의 재해 강도 단계 분류모형에 관한 연구)

  • Seungmin Lee;Wonjoon Wang;Yujin Kang;Seongcheol Shin;Hung Soo Kim;Soojun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.239-239
    • /
    • 2023
  • 최근 도시화 및 기후변화에 따른 재난의 피해가 증가하고 있다. 국내 기상청에서는 호우 및 태풍에 대한 예·경보(주의보, 경보)를 전국적으로 통일된 기준(3시간, 12시간 누적강우량)에 따라 발령하고 있다. 이에 따라 현재 예·경보 기준에는 피해가 발생한 사상에 대한 지역별 특성이 고려되지 않는 문제점이 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 서울특별시, 인천광역시, 경기도의 호우 및 태풍에 대한 재해사상별 발생한 피해액 및 누적강우량을 활용하여 재해강도의 단계별 기준을 수립하고, 입력자료로 관측된 강우값을 활용하여 발생할 수 있는 재해의 발생 강도를 분류하는 모형을 개발하고자 하였다. 본 연구에서는 호우 및 태풍에 의한 재해 피해액의 분위별로 재해강도 단계(관심, 주의, 경계, 심각)를 분류하였고, 재해강도 단계에 따른 누적강우량 기준을 지자체별로 제시하였으며, 분류한 재해의 강도 단계를 모형의 종속변수로 활용하였다. 재해피해가 발생하지 않은 무강우 지속시간을 산정하여 호우 사상을 분류하였다. 지자체별로 재해 발생강도 분류 모형 개발을 위하여 머신러닝 모형 4가지(의사결정나무, 서포트 벡터 머신, 랜덤 포레스트, XGBoost)를 활용하였다. 본 연구에서 분류한 피해가 발생하지 않은 호우사상 및 피해가 발생한 사상별로 강우량, 지속시간 최대 강우량(3시간, 12시간), 선행강우량, 누적강우량을 독립변수로 입력하여 종속변수인 재해 발생 강도를 분류하였다. 각 모형별로 F1 Score를 이용한 정확도 평가 결과, 의사결정나무의 F1 Score가 평균 0.56으로 가장 우수한 정확도를 가지는 것으로 평가되었다. 본 연구에서 제시하는 머신러닝 기반 재해 발생 강도 분류모형을 활용하면 호우 및 태풍에 의한 재해에 대하여 지자체별로 재해 발생 강도를 단계별로 파악할 수 있어, 재난 담당자들의 의사결정을 위한 참고 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

Comparison of Rainfall Quantile using At-site Frequency Analysis and Scale Invariance Property (빈도해석과 스케일 성질을 이용한 확률강우량의 비교)

  • Jung, Young-Hun;Kim, Soo-Young;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.164-168
    • /
    • 2008
  • 일반적으로 확률강우량은 관측지점에서 관측된 연최대 강우량자료를 바탕으로 빈도해석을 적용하여 산정한다. 그러나 국내에서는 매시각별로 관측된 자료가 대부분이기 때문에 단기간 혹은 장기간의 지속기간에 대한 확률강우량을 산정하는 것은 쉽지 않다. 따라서 본 연구에서는 매시각단위의 지속기간 강우자료를 바탕으로 다양한 지속기간에 대한 확률 강우량을 산정할 수 있는 스케일 성질을 적용하여 확률강우량을 산정하여 정확성을 판단하였다. 강우자료는 비교적 신뢰성이 높고 자료기간이 긴 기상청 지점 22개 자료를 사용하였으며, 2003년까지의 관측된 자료를 이용하여 확률강우량을 산정한 후 지점빈도해석 프로그램인 FARD2006과 비교하여 지점빈도해석의 결과 값을 참값으로 절대상대오차를 산정하여 비교하였다. 산정한 방법은 기준이 되는 확률강우량을 산정한 후 그보다 긴 지속기간에 대한 확률강우량을 산정하는 방법인 상향스케일링 (Up-scaling)과 그 보다 짧은 지속기간에 대한 확률강우량을 산정하는 방법인 하향스케일링(Down-scaling)의 두 가지 방법으로 확률강우량을 산정하였다. 두 방법 모두 1시간$\sim$24시간의 지속기간에 대한 확률강우량을 2년$\sim$500년의 재현기간에 대하여 확률강우량을 산정하였으며, 빈도해석으로 산정한 FARD2006의 결과값과 비교하여 절대상대오차를 산정하였다. 그 결과, 시간단위자료를 사용할 경우 대부분 절대상대오차가 10% 미만인 결과를 얻을 수 있었으며, 14개의 재현기간 중에서 8개 이상의 재현기간에 대해 적용이 가능한 것으로 나타났다. 지속기간 1시간 강우자료를 기준 지속기간으로 1시간 미만의 지속기간에 대한 확률강우량을 추정한 결과 10분을 제외하고는 대부분 절대상대오차가 10% 내외의 정확도를 가지는 것으로 나타났다. 따라서 스케일 성질을 이용하여 미계측 강우지속기간의 확률강우량을 추정할 수 있을 것으로 판단된다.

  • PDF

Runoff in upland soils at a torrential rain with soil texture and slopeness (집중강우시 우리나라 밭토양의 토성별 경사도별 물유출 양상)

  • Jung, Kang-Ho;Hur, Seung-Oh;Ha, Sang-Geon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.255-259
    • /
    • 2005
  • 본 연구는 1981-1991년 농업과학기술원 라이시미터에서 수집한 결과를 이용하여 집중강우시 경사지 밭토양의 물유출 특성을 구명하였다. $7\~9$월 집중강우시 토양 침투수나 지표 유거수는 농업지역에서 환경으로 물질이 이동하는 주요 경로이며 특히 경사지 밭토양에서 지표 유거수는 토양유실의 주원인 중 하나이기 때문에 이에 대한 이해는 매우 중요하다. 이를 위해 강우량, 지표 유거수량, 지하 침투수량 측정 자료 중 호우주의보가 발령되는 일강우량 80mm이상일 때를 대상으로 하여 토성과 경사도에 따른 강우량과 유거수, 침투수의 관계를 분석하였다. 강우량이 적을 때 강우에 대한 침투수와 유거수의 비율은 강우시 표토의 토양수분함량에 많은 영향을 받는다. 이는 표토의 토양수분함량에 따라 유출 또는 침투 발생 유효강우량이 결정되기 때문이다. 강우량이 적을 때의 유거수량과 침투수량을 판단하기 위해 범용토양유실예측공식(Universal soil loss equation, USLE)에서는 0.5 inch 즉, 12.5 mm 이상의 강우를 유출에 대한 유효강우로 가정하고 있으며 많은 모형에서 토양의 침투속도, 포장용수량, 강우시점의 토양수분함량의 함수로 유출 또는 침투 유효강우량을 산정하고 있다. 그러나 강우량이 클 때는 강우에 대한 침투수와 유거수에 비율에 토양수분함량이 미치는 영향이 비교적 적기 때문에 토양의 수분함량에 대한 고려없이 강우와 침투수, 유거수에 대한 관계를 평가하는 것이 가능하였다. 경사도 $10\%$, 경사장 15m, 피복작물 콩인 양토를 기준으로 할 때 강우량과 침투수의 관계는 $I_{10}(mm)=0.44R(mm)+5.8(r^2=0.55)$이었다. y절이 발생한 이유는 이전 강우에 의해 침투되고 있는 물이 있음을 함축하며 기울기 0.40은 강우의 $40\%$가 지하로 침투하였음을 의미한다. 침투수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 1.12로 가장 컸고, 식양토 0.94, 식토 0.91로 평가되었다. 이는 토성간의 침투속도 및 투수속도의 경향이 반영된 것이다. 경사에 따라서는 경사도가 증가할수록 지수적으로 감소하였으며 $10\% 경사일 때를 기준으로 $I(mm)=I_{10}{\times}1.17{\times}e^{-0.0164s(\%)}$로 나타났다. 같은 조건에서 강우량과 유거수의 관계는 $Ro_{10}(mm)=5.32e^{0.11R(mm)}(r^2=0.69)$로 나타났다. 이는 토양의 투수특성에 따라 강우량 증가에 비례하여 점증하는 침투수와 구분되는 현상이었다. 경사와 토양이 같은 조건에서 나지의 경우 역시 $Ro_{B10}(mm)=20.3e^{0.08R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10}{\times}0.797{\times}e^{-0.021s(\%)}$로 나타났다.

  • PDF

Efficient use of AWS data for determining the Disaster Prevention Performance Objectives (방재성능목표 설정의 AWS 자료 활용방안)

  • Kong, So Yoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.221-221
    • /
    • 2022
  • 방재성능목표란 홍수, 호우 등으로부터 재해를 예방하기 위한 방재정책 등에 적용하기 위하여 처리 가능한 시간당 강우량 및 연속강우량의 목표로, 각 지자체별로 지역특성 및 경제여건 등을 고려하여 지역별 방재성능목표를 설정한다. 지역별 방재성능목표 기준을 설정하기 위해 전국을 168개 티센망으로 분류하고 69개 지점 확률강우량을 활용하여 지방자치단체별 확률강우량을 산정하고, 지방자치단체별 티센면적 비율을 감안하여 각 지자체별 방재성능목표 설정 기준을 마련한다. 이때 확률강우량 산정에 기상청에서 제공하는 종관기상관측(ASOS) 자료를 이용하는데, 종관기상관측(ASOS, Automated Synoptic Observing System)이란 종관규모의 날씨를 파악하기 위하여 정해진 시각에 모든 관측소에서 같은 시각에 실시하는 지상관측으로, 종관규모는 일기도에 표현되어 있는 고기압이나 저기압의 공간적 크기 및 수명을 말하며, 해당 지역의 현재 기상 실시간 제공 및 기상예보에 활용한다. 그러나 ASOS 자료로 산정한 확률강우량을 토대로 설정한 지역별 방재성능목표는 지배관측소개소 및 면적 비율에 따라 강우량이 실제 해당 지역에 내린 강우량에 비해 작거나 크게 산정되어 실제 강우량을 반영하지 못하는 문제가 발생한다. 이에 지진·태풍·홍수·가뭄 등 기상현상에 따른 자연재해를 막기 위해 실시하는 지상관측인 방재성능관측(AWS, Automatic Weather System)을 1997년부터 약 510여개 지점에 설치하여 기상관측자료를 구축하고 있으나, 관측자료가 30년 미만이므로 자료의 일관성 및 신뢰도 확보 등의 문제로 이용하고 있지 않다. 실제로 ASOS 관측소와 AWS 관측소의 시간 강우량 최댓값 차이가 큼에도 불구하고 행안부는 지역별 방재성능목표 수립을 위한 강우량 산정에서 AWS 관측소의 기록은 반영하지 않고 ASOS 관측소 기록만 적용하여 실제 해당 지역의 강우량을 반영하는 방재 대책을 수립하지 못하는 실정이다. 따라서 소규모 유역 및 재해영향평가 등의 경우 인근 지역에 AWS 관측소가 있을 경우, 해당지역의 기상 특성을 대변하는 자료로 보유관측년수가 30년 이상인 AWS 자료의 적극적인 활용이 필요할 것으로 판단된다.

  • PDF

A Study on Estimation of Design Rainfall considering Frequency of Real Rainfall (실 호우의 발생빈도를 고려한 확률강우량 산정연구)

  • Moon, Young-Il;Kim, Min-Seok;Mok, Ji-Yoon;Yuk, Gi-moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.189-189
    • /
    • 2018
  • 확률강우량은 수공구조물 설계, 목표강우량과 같은 방재성능목표 그리고 방재성능평가에 활용되는 기준으로 활용되고 있다. 과거 강우자료계열을 기반으로 통계분석 과정을 걸쳐 산정되는 확률강우량은 재현기간별 발생빈도에서 실제 발생한 강우량보다 과소 산정되는 문제점이 있다. 이에 본 연구에서는 강우자료를 최대치계열과 초과치계열로 구분하여 각각 확률강우량을 산정하고, 확률분포형별 확률강우량과 실제 강우량의 비교분석을 실시하였다. 또한, 실제 강우의 재현기간별 발생빈도를 기반으로 과소 추정되는 확률강우량의 문제점을 보완하는 산정방안을 제시하였다. 본 연구의 결과는 과소 추정되는 확률강우량의 문제점을 보완하여 적정 확률강우량 산정함으로써, 수공구조물 설계 및 방재성능평가에 기여할 것으로 판단된다.

  • PDF

Analysis on the shift characteristic of the rainfall (강우 자료의 변동 특성 분석)

  • Oh, Je-Seung;Kim, Chi-Young;Kim, Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1602-1607
    • /
    • 2007
  • 본 연구에서는 국내 61개 지점의 강우자료를 사용하여 게릴라성 호우 및 국지성 호우가 빈번하게 발생하기 시작한 1998년을 기준으로 강우의 변동 특성을 분석하고자 하였다. 분석은 두 가지 방법으로 수행하였으며 우선, 지속시간별 초과 강우의 발생 횟수를 산정하여 분석하였다. 또한, 각 지점의 연도별 10분, 1시간, 1일 최대 강우량을 산정하여 변동성 분석을 수행하였다. 분석 기법으로는 WMO에서 2000년도에 제시한 경향성 및 변동성 분석 기법을 사용하였다. 분석 결과 지속시간별 초과 횟수의 분석에서는 임의의 초과 시간 기준에 대해 모든 지속시간에서의 변동성이 통계적으로 유의성을 나타내었으며, 이는 각각의 지속시간에 대해 일정 규모이상의 강우가 발생하는 횟수가 과거에 비해 증가하였음을 의미한다. 최대 강우량을 사용한 분석에서도 이러한 변동성이 확인 되었다. 기간이 짧은 10분 최대 강우량에서만 변동성을 가진 지점은 3개 지점 이었지만, 1시간 및 일 최대 강우량 값은 61개 지점 중 30개 지점에서의 변동성이 유의한 것으로 나타났다. 본연구를 통하여 대규모 강우의 발생 횟수 및 단기간 강우량이 98년을 시점으로 한 변동성을 가지고 있음을 알 수 있었다.

  • PDF

Analysis of Flood Prediction and Warning Alert Standard for Urban Mid and Small Stream (도시지역 중소하천 홍수예경보 발령 기준 산정)

  • Song, yang-ho;Lee, jung-ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.463-464
    • /
    • 2016
  • 본 연구에서는 하나의 도시유역 중소하천에 대하여 수리 수문 분석을 바탕으로 홍수예경보 발령을 위한 일련의 분석 체계를 수립하였다. 이를 통해 산정된 결과물은 강우지속기간별 경보발령 기준 강우량 수치이다. 이것은 해당 하천이 합류하는 본류 하천의 배수위 영향에 따라 달라질 수 있다. 경보발령 기준 강우량 산정을 위한 도시유역 중소하천의 수리 수문 분석은 가장 일반적인 해석 모형인 HEC-HMS 및 HEC-RAS 모형들을 상호 연계하여 이루어졌으며, 경보발령 기준 강우량 산정에 있어서는 상 하류의 다양한 관측수위 조건을 고려하였다.

  • PDF

Development of Nomograph for Debris Flow Forecast (토석류 예보를 위한 Nomograph 작성)

  • Oh, Cheong Hyeon;Nam, Dong Ho;Lee, Suk Ho;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.297-297
    • /
    • 2019
  • 최근 기후변화로 인해 전 세계적으로 태풍 및 국지성 집중호우로 인한 피해가 급증하고 있으며, 그로 인한 2차 피해인 산사태와 토석류 피해 또한 빈번하게 발생하고 있다. 한국 또한 토석류로 인해 도심지역의 피해가 급증하고 있으며, 많은 인명피해 및 재산피해가 발생하였다. 현재 한국에서는 산림청의 산사태 예보기준 및 기상청의 호우예보 기준을 사용하고 있으나, 토석류에 대한 예보 기준과 시스템은 부재하다. 따라서 본 연구에서는 토석류 예보를 위해 토석류가 발생했던 피해사례 40종을 수집하여 토석류가 발생했던 시점에서의 누적강우와 강우강도를 이용하여 강우경보지수(Rainfall Triggering Index, RTI)를 산정하였다. 또한 RTI를 강우량의 함수인 한계누적강우량(Critical Accumulated Rainfall, Rc)으로 변환하여 토석류 발생위험지역에 거주하는 일반인들이 강우지수에 대한 이해도를 높이고자 하였다. 토석류 예보를 위하여 RTI 10, 70, 90%에 해당하는 한계누적강우량(Rc)을 산정하여 지속시간에 따른 Rc곡선을 작성하였으며 Nomograph를 이용하여 시간에 따른 토석류 예보 단계를 시각적으로 표출하였다. 또한 실제 토석류가 발생했던 인제, 서울, 청주의 사례에 대해 Nomograph를 작성하여 산림청, 기상청의 예보 기준과 비교 분석하였다.

  • PDF

A Study on Estimation of Quantile using Regional Scaling Model and Frequency Analysis (빈도해석과 지역 스케일 모델을 이용한 확률강우량 추정에 대한 연구)

  • Jung, Younghun;Kim, Sunghun;Kim, Hanbeen;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.301-301
    • /
    • 2016
  • 국내의 경우 수공구조물을 설계하기 위해서는 빈도해석을 통해 설계수문량을 산정한다. 일반적으로 실무에서는 지점빈도해석을 수행하게 되는데 설계빈도보다 대부분 짧은 기간의 자료를 이용하여 산정한다. 지역빈도해석은 이러한 자료기간이 가지는 문제점을 극복하기 위하여 확률수문량의 정확도와 신뢰도를 향상시키는 기법이다. 스케일 모델은 지속기간별로 관측된 강우자료를 이용하여 재현기간에 대한 지속기간의 함수로 표현이 가능하며, 이를 통해 강우의 IDF곡선을 제시할 수 있는 수학적 모델이다. 대상지역의 강우관측소에서 관측된 강우자료가 일단위이면, 기준지속기간이 24시간이 되며, 기준지속기간에 대한 확률강우량으로부터 임의의 지속기간에 대한 확률강우량을 스케일 모델을 이용하여 추정할 수 있다. 따라서 짧은 자료를 보유한 지역이거나 미계측 지역에 대한 확률강우량을 추정을 위해 지역빈도해석과 지역 스케일 모델을 이용하여 확률강우량을 추정하여 지점빈도해석과 비교하고자 한다. 본 연구를 위해 한강유역의 강우 관측소를 이용하였으며, 군집분석 중 k-means방법을 적용하여 수문학적 동질성을 확보한 후 지역을 구분하였다. 구분된 지역은 지점 및 지역빈도해석을 수행한 후 상대평균제곱근오차(relative root mean square error, RRMSE)를 비교하여 정확도를 판단하였고, 정확도가 높은 빈도해석에 지역 스케일 모델을 적용하여 미계측 지점에 대한 임의의 시간에 대한 확률강우량을 추정하고자 한다.

  • PDF

DFG curve creation for Rainfall Criteria of Debris flow Occurrence Prediction (토석류 발생예측의 강우기준에 대한 DFG 곡선 작성)

  • Yu, Byung In;Kim, Byung Sik;Jeung, Se Jin;Lee, Suk Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.278-278
    • /
    • 2015
  • 우리나라의 산사태 및 토석류의 발생 시기는 주로 7,8,9월에 집중 되어 있고 유발인자 중 강우는 산사태 및 토석류를 발생시키는 가장 큰 인자이다. 특히 강원도 지역은 산지지형이 많고 여름철 장마나 국지적인 집중호우에 의해 토석류의 발생빈도가 다른지역에 비해 많다. 7,8,9월의 누적 강우량이 1,100mm 이상이 되는 지역에서 극심한 피해가 발생하고 누적강우량이 많을수록 규모도 커지게 된다. 이러한 결과는 취약지역에서 강우에 의해 토석류가 발생한 가능성이 증가한다는 것을 의미하며, 일정이상의 강우가 발생할 시 취약성이 낮은 지역에서도 토석류 및 산사태가 발생할 가능성이 충분이 있다는 것을 의미한다. (양인태 등, 2009) 따라서 강우발생에 따른 토석류 발생기준에 대해서 정립할 필요가 있다. 본 연구에서는 강원도 지역의 산사태 및 토석류 발생이력에 대해서 강우데이터를 분석하여 강우기준을 설정 하였다. 강우관측소는 국토교통부, 한국수자원공사, 기상청의 강우자료를 활용하였다. 관측소의 선택은 Thiessen Polygon에 의해 선택하였고, 유효시간에 따라 강우강도, 유효평균 강우강도, 누적강우량을 산정하여 DFG (Debris-Flow Guidance) 곡선을 작성하여 강우기준을 설정하였다. 또한 토질과 유효토심에 따라 강우기준을 제시하였다.

  • PDF