• Title/Summary/Keyword: 기준좌표계

Search Result 271, Processing Time 0.033 seconds

A Basic Study of an Integrated Digital Map Generation to an Electronic Navigational Chart and a Digital Topographic Map for Coastal Development and Management (연안 개발 및 관리를 위한 육·해도 통합수치도 제작에 관한 기초연구)

  • Yi, Gi-Chul;Park, Chang-Ho;Kim, Jeong-Hee;Suh, Sang-Hyun;Jeong, Hui-Gyun;Choi, Joon-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • The Korean government is developing a systematic plan of integrated coastal management for effective conservation, utilization, and development of coastal areas. For this plan, integrated maps of land maps and nautical charts are indispensable. However, these maps are not made, nor studied yet in terms of integration, although digital maps(DM) on land and electronic nautical charts(ENC) have been recently developed by Korean Geography Institute and National Marine Investigation Institute, respectively. In this study, as preliminary studies to make eventual integrated maps, the concept of coastal areas are defined, specifically, coastal lines from DM and ENC are matched against each other. Issues on map production procedures, coordinate systems, and map projections, are carefully considered. A test coastal area located in Seo-Gu, Pusan, over 14 km of coastal lines is selected for the edge matching of coastal lines. RMS differences are 13.83 m and 4.37 m over man-made coastal lines and natural coast lines, respectively, which are quite larger considering a scale difference and other factors. However, no systematic differences are found.

  • PDF

Automated Image Matching for Satellite Images with Different GSDs through Improved Feature Matching and Robust Estimation (특징점 매칭 개선 및 강인추정을 통한 이종해상도 위성영상 자동영상정합)

  • Ban, Seunghwan;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1257-1271
    • /
    • 2022
  • Recently, many Earth observation optical satellites have been developed, as their demands were increasing. Therefore, a rapid preprocessing of satellites became one of the most important problem for an active utilization of satellite images. Satellite image matching is a technique in which two images are transformed and represented in one specific coordinate system. This technique is used for aligning different bands or correcting of relative positions error between two satellite images. In this paper, we propose an automatic image matching method among satellite images with different ground sampling distances (GSDs). Our method is based on improved feature matching and robust estimation of transformation between satellite images. The proposed method consists of five processes: calculation of overlapping area, improved feature detection, feature matching, robust estimation of transformation, and image resampling. For feature detection, we extract overlapping areas and resample them to equalize their GSDs. For feature matching, we used Oriented FAST and rotated BRIEF (ORB) to improve matching performance. We performed image registration experiments with images KOMPSAT-3A and RapidEye. The performance verification of the proposed method was checked in qualitative and quantitative methods. The reprojection errors of image matching were in the range of 1.277 to 1.608 pixels accuracy with respect to the GSD of RapidEye images. Finally, we confirmed the possibility of satellite image matching with heterogeneous GSDs through the proposed method.

Dimensional Quality Assessment for Assembly Part of Prefabricated Steel Structures Using a Stereo Vision Sensor (스테레오 비전 센서 기반 프리팹 강구조물 조립부 형상 품질 평가)

  • Jonghyeok Kim;Haemin Jeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.173-178
    • /
    • 2024
  • This study presents a technique for assessing the dimensional quality of assembly parts in Prefabricated Steel Structures (PSS) using a stereo vision sensor. The stereo vision system captures images and point cloud data of the assembly area, followed by applying image processing algorithms such as fuzzy-based edge detection and Hough transform-based circular bolt hole detection to identify bolt hole locations. The 3D center positions of each bolt hole are determined by correlating 3D real-world position information from depth images with the extracted bolt hole positions. Principal Component Analysis (PCA) is then employed to calculate coordinate axes for precise measurement of distances between bolt holes, even when the sensor and structure orientations differ. Bolt holes are sorted based on their 2D positions, and the distances between sorted bolt holes are calculated to assess the assembly part's dimensional quality. Comparison with actual drawing data confirms measurement accuracy with an absolute error of 1mm and a relative error within 4% based on median criteria.

The Analysis of Dose in a Rectum by Multipurpose Brachytherapy Phantom (근접방사선치료용 다목적 팬톰을 이용한 직장 내 선량분석)

  • Huh, Hyun-Do;Kim, Seong-Hoon;Cho, Sam-Ju;Lee, Suk;Shin, Dong-Oh;Kwon, Soo-Il;Kim, Hun-Jung;Kim, Woo-Chul;K. Loh John-J.
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.223-229
    • /
    • 2005
  • Purpose: In this work we designed and made MPBP(Multi Purpose Brachytherapy Phantom). The MPBP enables one to reproduce the same patient set-up in MPBP as the treatment of the patient and we tried to get an exact analysis of rectal doses in the phantom without need of in-vivo dosimetry. Materials and Methods: Dose measurements were tried at a point of rectum 1, the reference point of rectum, with a diode detector for 4 patients treated with tandem and ovoid for a brachytherapy of a cervix cancer. Total 20 times of rectal dose measurements were made with 5 times a patient. The set-up variation of the diode detector was analyzed. The same patient set-ups were reproduced in self-made MPBP and then rectal doses were measured with TLD. Results: The measurement results of the diode detector showed that the set-up variation of the diode detector was the maximum $11.25{\pm}0.95mm$ in the y-direction for Patient 1 and the maximum $9.90{\pm}4.50mm,\;20.85{\pm}4.50mm,\;and\;19.15{\pm}3.33mm$ in the z-direction for Patient 2, 3, and 4, respectively. Un analyzing the degree of variation in 3 directions the more variation was showed in the z-direction than x- and y-direction except Patient 1. The results of TLD measurements in MPBP showed the relative maximum error of 8.6% and 7.7% at a point of rectum 1 for Patient 1 and 4, respectively and 1.7% and 1.2% for Patient 2 and 3, respectively. The doses measured at R1 and R2 were higher than those calculated except R point of Patient 2. this can be thought to related to the algorithm of dose calculation, whcih corrects for air and water but is guessed not to consider the correction for the scattered rays, but by considering the self-error (${\pm}5%$) TLD has the relative error of values measured and calculated was analyzed to be in a good agreement within 15%. Conclusion: The reproducibility of dose measurements under the same condition as the treatment could be achieved owing to the self-made MPMP and the dose at the point of interest could be analyzed accurately. If a treatment is peformed after achieving dose optimization using the data obtained in the phantom, dose will be able to be minimized to important organs.

Video Camera Characterization with White Balance (기준 백색 선택에 따른 비디오 카메라의 전달 특성)

  • 김은수;박종선;장수욱;한찬호;송규익
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.23-34
    • /
    • 2004
  • Video camera can be a useful tool to capture images for use in colorimeter. However the RGB signals generated by different video camera are not equal for the same scene. The video camera for use in colorimeter is characterized based on the CIE standard colorimetric observer. One method of deriving a colorimetric characterization matrix between camera RGB output signals and CIE XYZ tristimulus values is least squares polynomial modeling. However it needs tedious experiments to obtain camera transfer matrix under various white balance point for the same camera. In this paper, a new method to obtain camera transfer matrix under different white balance by using 3${\times}$3 camera transfer matrix under a certain white balance point is proposed. According to the proposed method camera transfer matrix under any other white balance could be obtained by using colorimetric coordinates of phosphor derived from 3${\times}$3 linear transfer matrix under the certain white balance point. In experimental results, it is demonstrated that proposed method allow 3${\times}$3 linear transfer matrix under any other white balance having a reasonable degree of accuracy compared with the transfer matrix obtained by experiments.

A Novel Volumetric Method for Quantitation of Titanium Dioxide in Cosmetics (용량분석법을 이용한 화장품 중 티타늄옥사이드의 정량)

  • Kim, Young-So;Kim, Boo-Min;Park, Sang-Chul;Jeong, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.289-293
    • /
    • 2005
  • Nowadays there are many sun protection cosmetics including organic or inorganic UV filter as an active ingredient. Chemically stable inorganic sunsEreen agents, usually metal oxides, we widely employed in high SPF products. Titanium dioxide is one of the most frequently used inorganic UV filters. It has been used as pigments for a long period of cosmetic history. With the development of micronization techniques, it becomes possible to incorporate titanium dioxide in sunscreen formulations without whitening effect and it becomes an important research topic. However, there are very few works related to quantitations of titanium dioxide in sunscreen products. In this research, we analyzed amounts of titanium dioxide in sunscreen cosmetics by adapting redof titration, reduction of Ti(IV) to Ti(III) and reoxidation to Ti(IV). After calcification of other organic ingredients of cosmetics, titanium dioxide is dissolved by hot sulfuric acid. The dissolved Ti(IV) is reduced to the Ti(III) by adding aluminum metals. The reduced Ti(III) is titrated against a standard oxidizing agent, Fe(III) (ammonium iron(III) sulfate), with potassium thiocyanate as an indicator In order to test accuracy and applicability of the proposed method, we analyzed the amounts of titanium dioxide in four types of sunscreen cosmetics, such as cream, make-up base, foundation and powder, after adding known amounts of titanium dioxide $(1{\sim}25w/w%)$. The percent recoveries of the titanium dioxide in four types of formulations were in the range between 96 and 105%. We also analyzed 7 commercial cosmetic products labeled titanium dioxide as an ingredient and compared the results with those of obtained from ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry), one of the most powerful atomic analysis techniques. The results showed that the titrated amounts were well coincided with the analyzed amounts of titanium dioxide by ICP-AES. Although instrumental analytical methods, ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) and ICP-AES, are the best for the analysis of titanium, it is hard to adopt because of their high prices for small cosmetic companies. It was found that the volumetric method presented here gat e quantitative and reliable results with routine lab-wares and chemicals.

Development of the Whole Body 3-Dimensional Topographic Radiotherapy System (3차원 전신 정위 방사선 치료 장치의 개발)

  • Jung, Won-Kyun;Lee, Byung-Yong;Choi, Eun-Kyung;Kim, Jong-Hoon;An, Seung-Do;Lee, Seok;Min, Chul-Ki;Park, Cham-Bok;Jang, Hye-Sook
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.63-71
    • /
    • 1999
  • For the purpose of utilization in 3-D conformal radiotherapy and whole body radiosurgery, the Whole Body 3-Dimensional Topographic Radiation Therapy System has been developed. Whole body frame was constructed in order to be installed on the couch. Radiopaque catheters were engraved on it for the dedicated coordinate system and a MeV-Green immobilizer was used for the patient setup by the help of side panels and plastic rods. By designing and constructing the whole body frame in this way, geometrical limitation to the gantry rotation in 3-D conformal radiotherapy could be minimized and problem which radiation transmission may be altered in particular incident angles was solved. By analyzing CT images containing information of patient setup with respect to the whole body frame, localization and coordination of the target is performed so that patient setup error may be eliminated between simulation and treatment. For the verification of setup, the change of patient positioning is detected and adjusted in order to minimize the setup error by means of comparison of the body outlines using 3 CCTV cameras. To enhance efficiency of treatment procedure, this work can be done in real time by watching the change of patient setup through the monitor. The method of image subtraction in IDL (Interactive Data Language) was used to visualize the change of patient setup. Rotating X-ray system was constructed for detecting target movement due to internal organ motion. Landmark screws were implanted either on the bones around target or inside target, and variation of target location with respect to markers may be visualized in order to minimize internal setup error through the anterior and the lateral image information taken from rotating X-ray system. For CT simulation, simulation software was developed using IDL on GUI(Graphic User Interface) basis for PC and includes functions of graphic handling, editing and data acquisition of images of internal organs as well as target for the preparation of treatment planning.

  • PDF

Reconstruction of Stereo MR Angiography Optimized to View Position and Distance using MIP (최대강도투사를 이용한 관찰 위치와 거리에 최적화 된 입체 자기공명 뇌 혈관영상 재구성)

  • Shin, Seok-Hyun;Hwang, Do-Sik
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 2012
  • Purpose : We studied enhanced method to view the vessels in the brain using Magnetic Resonance Angiography (MRA). Noticing that Maximum Intensity Projection (MIP) image is often used to evaluate the arteries of the neck and brain, we propose a new method for view brain vessels to stereo image in 3D space with more superior and more correct compared with conventional method. Materials and Methods: We use 3T Siemens Tim Trio MRI scanner with 4 channel head coil and get a 3D MRA brain data by fixing volunteers head and radiating Phase Contrast pulse sequence. MRA brain data is 3D rotated according to the view angle of each eyes. Optimal view angle (projection angle) is determined by the distance between eye and center of the data. Newly acquired MRA data are projected along with the projection line and display only the highest values. Each left and right view MIP image is integrated through anaglyph imaging method and optimal stereoscopic MIP image is acquired. Results: Result image shows that proposed method let enable to view MIP image at any direction of MRA data that is impossible to the conventional method. Moreover, considering disparity and distance from viewer to center of MRA data at spherical coordinates, we can get more realistic stereo image. In conclusion, we can get optimal stereoscopic images according to the position that viewers want to see and distance between viewer and MRA data. Conclusion: Proposed method overcome problems of conventional method that shows only specific projected image (z-axis projection) and give optimal depth information by converting mono MIP image to stereoscopic image considering viewers position. And can display any view of MRA data at spherical coordinates. If the optimization algorithm and parallel processing is applied, it may give useful medical information for diagnosis and treatment planning in real-time.

The assessment of dentoalveolar compensation in facial asymmetry individuals: integration of cone beam CT and laser scanned dental cast images (Cone beam CT 영상과 석고모형 레이저 스캔 영상의 결합을 이용한 안면비대칭자의 치성보상 평가)

  • Song, Hyo-Kyung;Son, Woo-Sung;Park, Soo-Byung;Kim, Seong-Sik;Kim, Yong-Il
    • The korean journal of orthodontics
    • /
    • v.40 no.6
    • /
    • pp.373-382
    • /
    • 2010
  • Objective: The purpose of this study was to assess the dentoalveolar compensation in facial asymmetry individuals using an integration of a CBCT image and a laser scanned dental cast image. Methods: The subjects consisted of 30 adults with asymmetric mandibles and 20 adults with symmetric mandibles. The CBCT and laser scanned dental cast images were integrated with a registration technique. Canine and first molar position and angulation were assessed from reference coordinates. The differences between deviated and non-deviated sides were analyzed with the paired t-test. The differences shown according to menton deviation were also statistically analyzed using Pearson correlation analysis. Results: The experimental group showed deviated and non-deviated side differences (dev.-ndev.) in the position and angle of the canine and first molars. Menton deviation showed positive correlation with the deviation side (dev.-ndev.) for the maxillary and mandibular 1st molar angles, negative correlation with the deviation side for the vertical position of the maxillary 1st molars, transverse position of the mandibular canine, transverse position and vertical position of the mesio-lingual cusp of the mandibular 1st molars. Conclusions: The upper and lower canine and first molars of facial asymmetry individuals were compensated, so the transverse position, vertical position, and angle showed differences between the deviated/non-deviated sides.

Excellent Local Tumor Response after Fractionated Stereotactic Radiation Therapy for Locally Recurrent Nasopharynx Cancer (국소 재발 비인강암에 대한 정위적 방사선 분할 치료의 적용)

  • Lim Do Hoon;Chio Dong Rak;Kim Moon Kyung;Kim Dae Yong;Huh Seung Jae;Baek Chung-Hwan;Chu Kwang Chol;Yoon Sung Soo;Park Keunchil;Ahn Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.15 no.1
    • /
    • pp.19-26
    • /
    • 1997
  • Purpose : This study is to report experience with Fractionated Stereotactic Radiation Therapy (FSRT) for locally recurrent nasopharynx cancer after curative conventional radiation therapy. Materials and Methods : Three Patients with locally recurrent and symptomatic nasopharynx cancer were given FSRT as reirradiation method between the Period of September of 1995 and August of 1996 For two Patients, application of FSRT is their third radiation therapy directed to the nasopharynx. Two patients were given low dose chemotherapy as radiation sensitizer concurrently with FSRT Authors used 3-dimensional coordinate system by individually made, relocatable Gill-Thomas-Cosman (GTC) stereotactic frame and multiple non-coplanar arc therapy dose Planning was done using Xknife-3. Total of 45 Gy/18 fractions or 50 Gy/20 fractions were given. Results : Authors observed satisfactory symptomatic improvement and remarkable objective tumor size decrease by follow-up MR images taken 1 month Post-FSRT in ali three patients, while no neurologic side effect attributable to reirradiation was noticed. Two died at 7 and 9 months with loco-regional and distant seeding outside FSRT field, while one patient is living for 4 month. Conclusion Authors experienced satisfactory therapeutic effectiveness and safety of FSRT as reirradiatlon method for locally recurrent nasopharynx cancer Development of more effective systemic chemotherapeutic regimen is desired for distant metastasis

  • PDF