• Title/Summary/Keyword: 기주식물 휘발성 물질

Search Result 4, Processing Time 0.019 seconds

Attractiveness of Host Plant Volatiles and Sex Pheromone to the Blueberry Gall Midge (Dasineura oxycoccana) (블루베리혹파리에 대한 기주식물 휘발성 물질과 성페로몬의 유인 효과)

  • Yang, Chang Yeol;Seo, Mi Hye;Yoon, Jung Beom;Shin, Yong Seub;Choi, Byeong Ryeol
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.393-398
    • /
    • 2020
  • The blueberry gall midge, Dasineura oxycoccana (Johnson) (Diptera: Cecidomyiidae), is an emerging pest on cultivated blueberries in Korea. To develop a sensitive tool for monitoring this pest in blueberry orchards, we compared the attractiveness of host plant volatiles and sex pheromone to D. oxycoccana adults. We performed gas chromatography-mass spectrometry (GC-MS) analysis of solid-phase microextraction (SPME)-collected volatiles that were released from blueberry ('Darrow' cultivar). The analysis revealed two major volatiles, cinnamaldehyde and cinnamyl alcohol from flowers; and three major volatiles, β-caryophyllene, germacrene D, and α-farnesene from shoots and young fruits. In field tests conducted in Gunsan, Korea in 2019, commercialized cinnamaldehyde, cinnamyl alcohol, β-caryophyllene, and α-farnesene, used singly or in quaternary combination, were unattractive to the blueberry gall midge. However, traps baited with the known sex pheromone (2R,14R)-2,14-diacetoxyheptadecane attracted significantly more males than the treatments with plant volatiles or the control. No synergistic effect was observed between sex pheromone and plant volatiles. Male D. oxycoccana were captured in the pheromone traps from May to August, with three peaks in mid-May, late June, and late July in Gunsan blueberry fields in 2020.

AC Recordings of Antennal Responses in The Rice Brown Planthopper to Common Plant Volatile Chemicals (식물 휘발성 물질에 대한 벼멸구 촉각의 전기생리학적 반응)

  • 윤영남;장영덕
    • Korean journal of applied entomology
    • /
    • v.33 no.1
    • /
    • pp.19-25
    • /
    • 1994
  • Electrophysiological recordings of antennal responses to common plant volatile chemicals in the rice brown planthopper, Niloparuota lugens (Homoptera: Delphasidae}, were examined. Volatile plant chemicals were generally credited with a major role In host plant location for food or egg laying by many insects feeding on plants as adults and/or as larvae. An mitial examination of extracellular responses has been conducted. Acton potentials recorded from the plaque organs were initially positive-going, biphaslc spikes and the background firing rate of the cells recorded ranged from 1 ~22 impulses/sec. A wide range of responses to changes in concentration of the test chemical was observed. The commonest response was a relatively small increase in exitation with increasing concentration beween 1 J.lg and 100).\g on the filter paper in syringe. Adtivity either peaked at 100 $\mug$ and remained virtually saturated at 1000 f19 or tended to decrease at the highest concentration.

  • PDF

Limitation in Attraction Efficacy of Aggregation Pheromone or Plant Volatile Lures to Attract the Western Flower Thrips, Frankliniella occidentalis Infesting the Hot Pepper, Capsicum annuum, in Greenhouses (시설 고추재배지에서 꽃노랑총채벌레 집합페로몬과 식물 휘발성 유인제 효능의 한계성)

  • Kim, Chulyoung;Gwon, Gimyeon;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.60 no.4
    • /
    • pp.369-377
    • /
    • 2021
  • Mass trapping of the western flower thrips, Frankliniella occidentalis, has been considered as an option to control this pest. This study applied the commercial lures to the hot pepper-cultivating greenhouses and assessed the enhancement of the attracting efficiency by adding to sticky traps. There was no color difference in the attracting efficiency between blue and yellow sticky traps. However, the installation position of the traps was crucial in the greenhouses. The more thrips were captured within host cropping area than outside areas of the crop. In vertical trap position, it was the most optimal to install the traps at the crop crown. Using these installation parameters, the yellow sticky traps captured approximately 1% population of the thrips. To enhance the trapping efficiency, the commercial lures containing aggregation pheromone or 4-methoxybenzaldehyde were added to the yellow sticky traps. However, these commercial lures did not significantly enhance the trapping efficiency compared to the yellow sticky trap alone. In contrast, Y-tube olfactometry assays confirmed the high efficiency of the aggregation pheromone or another plant volatile (methyl isonicotinate) to attract the thrips. Interestingly, these lure components had lower attracting efficiencies compared to the hot pepper flowers. The high attractive efficiency of the flowers was supported by the observation that the commercial lure was effective to enhance the trapping efficiency of the yellow sticky trap against F. occidentalis in Welsh onion (Allium fistulosum) field without any flowers. This study indicates the limitation of the commercial lures in application to hot pepper fields for the mass trapping of F. occidentalis. It also suggests active volatile component(s) from hot pepper flowers to attract F. occidentalis.

Responses of Phyllotreta striolata and Athalia rosae ruficornis to Colored-sticky Traps and Aggregation Pheromone and Seasonal Fluctuations in Radish Fields on Jeju Island (제주지역 무에서 벼룩잎벌레와 무잎벌의 색트랩과 집합페로몬에 대한 반응과 연중 발생특성)

  • Song, Jeong Heub;Yang, Young Taek;Yang, Cheol Jun;Choi, Byeong Ryul;Jwa, Chang Sook
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.289-294
    • /
    • 2015
  • Striped flea beetle, Phyllotreta striolata (SFB) and turnip sawfly, Athalia rosae ruficornis (TSF) are two economically important sporadic pests in radish fields on Jeju island. The response of adult SFB and TSF to a mixture of aggregation pheromone, (+)-(6R,7S)-himachala-9,11-diene and host plant volatile, allyl isothiocyanate (HAI), as well as to yellow and blue sticky traps was examined in radish fields. Adult SFB was more attracted to the sticky trap with HAI, regardless of the color of the sticky trap; however, adult TSF was more attracted on the yellow sticky trap than blue, and no effect of HAI was observed. The adult SFB and TSF can be effectively monitored using yellow sticky traps placed 10 cm above the plant canopy. SFB and TSF had 3 and 5 peak times in a year, respectively. The first peak occurred in the middle of March for SFB and mid-late of April for TSF. We expect that the results of the present study can facilitate minimizing the damage caused by the two important pests in commercial radish fields.