• Title/Summary/Keyword: 기어 물림 미스얼라인먼트

Search Result 4, Processing Time 0.02 seconds

Dynamic Response Analysis of 2.5MW Wind Turbine Gearbox with Flexible Pins (유연핀을 적용한 2.5MW급 풍력발전기용 기어박스의 동응답 해석)

  • Cho, Jin-Rae;Jeong, Ki-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • This study is concerned with the numerical investigation of dynamic characteristics of 2.5MW-class wind turbine gearbox in which the misalignment improvement of plenary gear shafts by the flexible pins and the dynamic impact response are analyzed by the finite element method. The tooth contact between gears is modelled using the line element having the equivalent tooth stiffness and the contact ratio to accurately and effectively reflect the load transmission in the internal complex gear system. The equivalent tooth stiffness is calculated by utilizing the tooth deformation analysis and the impulse torque is applied to the input shaft for the dynamics response characteristic analysis. Through the numerical experiments, the equivalent tooth stiffness model was validated and the misalignment improvement of planetary gear shafts was confirmed from the comparison with the cases of fixed shafts at one and both ends.

Effects of Bearing Characteristic on the Gear Load Distribution in the Slewing Reducer for Excavator (굴삭기용 선회감속기의 베어링 특성이 기어 하중 분포에 미치는 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.8-14
    • /
    • 2014
  • A slewing reducer consists of two planetary gearsets which require a good load distribution over the gear tooth flank for enhanced durability. This work investigates how the bearing characteristics influence the load distribution over the gear tooth flank. A complete system model is developed to analyze a slewing reducer, including the non-linear mesh stiffness of the gears and the non-linear stiffness of bearings. The results indicate that the type, arrangement and preload of the output shaft bearings greatly influence the gear mesh misalignment, contact pattern, face load factor, gear safety factor and lifetimes of the parts.

Analysis of Load Distribution and Sharing on the Planetary Reducer for Wind Turbines (풍력발전기용 유성 감속기의 하중 분포 분석)

  • Park, Young-Jun;Lee, Geun-Ho;Kim, Jeong-Kil;Song, Jin-Seop;Park, Sung-Ha
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.830-836
    • /
    • 2011
  • Most of pitch/yaw reducers consist of several planetary geartrains. Planetary geartrains make gearboxes to be small and light, low noise and good efficiency. Most important thing in the planetary geartrain is load distribution on the gear tooth flank. In this study, the effect of output shaft bearings on the load distribution of gear tooth flank has been investigated. The commercial software was employed to compare the load distribution of two models depending on the bearing type. The spherical roller bearing(SRB) and the cylindrical roller bearing(CRB) were used as output shaft bearings in the $1^{st}$ model, and two taper roller bearings(TRB) were used in the $2^{nd}$ model. As a result, it was found that the $2^{nd}$ model. showed better performances on the load distribution of gear tooth flank, this results stated that the output shaft bearing system could be important consideration when designing reducers for wind turbine systems.

Effects of Bearing Internal Clearance on the Load Distribution and Load Sharing in the Pitch Reducer for Wind Turbines (베어링 내부 틈새가 풍력발전기용 피치 감속기의 하중 분포와 하중 분할에 미치는 영향 분석)

  • Kim, Jeong-Kil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The pitch reducer consists of several planetary gearsets, and they should have good load distribution over gear tooth flank and load sharing among the planets to improve the durability. This work investigates how bearing internal clearances influence both the load distribution over the gear tooth flank and the planet load sharing. A whole system model is developed to analyze a pitch reducer. The model includes non-linear mesh stiffness of gears, non-linear stiffness of bearings. The results indicate that the face load factor and mesh load factor decrease, and the fatigue life of output shaft bearings increase as bearing internal clearances of output shaft decrease. Therefore, the internal clearance of output shaft bearing must be considered when designing the pitch reducer for wind turbines.