• Title/Summary/Keyword: 기액평형

Search Result 19, Processing Time 0.024 seconds

Isobaric vapor-liquid equilibria for ternary and each corresponding binaries of the system n.Dodecane-1.Decanol-1.Dodecanol at 15 mbar (n.Dodecane-1.Decanol-1.Dodecanol 삼성분계 및 각 이성분계의 15 mbar 정합 기액평형)

  • 박소진;이태종
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.308-314
    • /
    • 1993
  • Both Vapor-liquid equilibrium data and boiling temperature have been measured for ternary and each corresponding binaries of n.dodecane-1.decanol-1.dodecanol mixture under constant pressure of 15 mbar. Measured vapor-liquid equilibrium data were correlated with the conventional g$\^$E/ model ; Margules, van Laar, Wilson, NRTL and UNIQUAC equations. Binary equilibrium data were thermodynamically tested by Redlich-Kister integral method and ternary data were also qualitatively checked by two point consistency test, suggested by McDermott-Ellis. Among the binary VLE data, only the system n.dodecane-1.decanol has minimum boiling azeotrope.

  • PDF

Vapor-Liquid Equilibria in Aqueous Polymer Solutions using a PRSV Equation of State (PRSV 상태방정식을 이용한 고분자 수용액 계의 기액 평형)

  • Leem, Young-Min;Kim, Mi-Kyung;Kim, Ki-Chang
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.241-248
    • /
    • 2002
  • In this work, we calculated the vapor-liquid equilibrium of aqueous polymer solutions by using PRSV equation of state combined with $G^{ex}$ mixing rules(HVO, MHVL, MHV2, LCVM). From the comparison of calculated results with experimental data obtained from literature, we found that calculation results by using MHV1 mixing rule have showed small range of error than HVO, MHV2 and LCVM mixing rules. Calculation results by using the combination of MHV1 mixing rule and UNIFAC-FV model have showed the best result for selected aqueous polymer solutions.

  • PDF

Isothermal vapor-liquid equilibria of n-Dodecane-1-Decanol, n-Dodecane-1 -Dodecanol and 1-Decanol-1-Dodecanol systems by Head Space Analysis (Head Space Analysis에 의한 n-Dodecane-1-Decanol, n-Dodecane-1- Dodecanol과 1-Decanol-1-Dodecanol계의 등온 기액 평형)

  • Park, So-Jin;Kang, Yong;Lee, Tae-Jong;Choi, Myoung-Jai;Lee, Kyu-Wan
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.225-230
    • /
    • 1993
  • Isothermal vapor-liquid equilibrium data have been measured for binary systems n-dodecane-1-defanol, n-doderane-1-dodecanol, and 1-decanoi-1-dodecanol at 140$^{\circ}C$ by using head space gas chromatography (H.S.G.C) as a static method. The activity coefficients, calculated taking into acount the nonideality of the liquid phase, were correlated with the conventional g$\^$E/ model, Margules, van Laar, Wilson, NRTL equations. These equilibrium data were thermodynamically consistent by Rrdlich- kister test, among these data, system n-dodecane-1-detanoi has minimum azeotrope.

  • PDF

Vapor-Liquid Equilibria for the Systems of MTBE-Methanol, MTBE-n-Heptane, n-Heptane-Methanol by Using Head Space Gas Chromatography (Head Space Gas Chromatography를 이용한 MTBE-Methanol, MTBE-n-Heptane, n-Heptane-Methanol계의 기액평형)

  • Lee, Ju-Dong;Lee, Tae-Jong;Park, So-Jin
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.706-713
    • /
    • 1994
  • Isothermal vapor-Liquid equilibrium data have been measured for binary systems MTBE-methanol, MTBE-n-heptane, and methanol-n-heptane at $45^{\circ}C$ and $65^{\circ}C$ by using head space gas chromato-graphy (H.S.G.C). Among these systems a minimum azeotrope was observed in both of MTBE-methanol system and n-heptane-methanol system. Particularly n-heptane-methanol system has a heterogeneous minimum azotrope since it has an immisible region. These equilibrium data were correlated with the excess Gibbs energy model, and the thermodynamic consistency test was also carried out by using Redlich-Kister equation.

  • PDF

Importance of finite rate inter-phase mass transfer in gas/cloud interaction (공기/구름의 상호작용에서 물질전달 한계속도의 중요성)

  • 임종포;조석연
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.83-84
    • /
    • 2001
  • 액적화학은 SO4$^{-2}$ 생성에 중요한 역할을 할 뿐만 아니라 OH와 HO$_2$ 라디칼 생성에도 영향을 미친다. 따라서 기존 기상 광화학반응에 액적화학을 추가하여 산성비 모사를 하여왔다. 그러나 액적화학을 추가하기 위해서는 기액간의 물질전달을 포함하여야 하고 액적화학반응속도와 기상화학반응속도가 크게 다름으로써 수치적 풀이의 어려움이 가중되는 문제가 있다. 따라서 기존 연구에서는 기액간의 평형 및 시간 분리 등의 가정을 사용하여 액적화학 반응 추가에 따른 문제를 해결하여 왔다. 본 논문은 이러한 수치단순화의 정확도를 평가하려 한다. (중략)

  • PDF

Measurements and Correlations of Isobaric Vapor-Liquid Equilibrium for Glycerol-Water Systems (Glycerol-물 계에 대한 등압 기액평형의 측정과 상관관계)

  • Rho, Seon-Gyun;Kang, Choon-Hyoung
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.893-900
    • /
    • 1997
  • In this study, vapor-liquid equilibria of a binary system, which consists of glycerol and water, are measured using a vaporrecirculating modified Othmer still at various subatmospheric pressures. The constituent components of the binary system considered in this study exhibit a large difference in the boiling temperatures. Since it is generally observed that the properties of a mixture greatly differ from those of the pure components, the phase equilibrium characteristics of a mixture can not be predicted from the properties of the pure components. Furthermore, an abrupt increase in the boiling temperature occurs as the concentration of the higher boiling component exceeds a certain value. Therefore, it is essential to acquire realistic phase equilibrium data of the mixture for industrial applications. Using the UNIQUAC model, the experimental vapor-liquid equilibrium data are correlated with good accuracy. The thermodynamic consistency test is also performed to ensure soundness of the data.

  • PDF

Estimation of Thermodynamic Properties of Refrigerant Mixtures Using a Modified Carnaha-Starling Equation of State (수정된 Carnahan-Starling 상태방정식을 이용한 혼합냉매의 물성계산)

  • 김민수;김동섭;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2189-2205
    • /
    • 1991
  • Thermodynamic properties of binary nonazeotropic refrigerant mixtures are estimated by using a modified Carnhan-Starling equation of state. In this study, pure component refrigerants such as R14, R23, R13, R13 B1, R22, R12, R134a, R152a, R142b, RC318, R114, R11, R123 and R113 are chosen and the thermodynamic properties of enthalpy and entropy are calculated in terms of relevant variables. The modified Carnahan-Starling equation of state is compared with the carnahan-Staring-De Santis equation of sate. Results show that the relative errors become slightly smaller with the equation of state proposed in this study. Correlations are obtained for the mixtures of which the vapor liquid equilibruim data are available to us in the literature. Those mixtures are R14/R23, R23/R12, R13/R12, R13/R11, R13B1/R22, R13B1/RC318, R12/RC138, R12/R114 and R12/R11. The binary interaction coefficients are found under the condition of minimizing the pressure deviations at the vapor liquid equiblibrium state and the estimation of the vapor liquid equilibrium for the refrigerant mixtures is done. Pressure-enthalpy and temperature-entropy diagrams are plotted for the refrigerant mixtures of specific composition.

A Study on the Boundary Layer Thickness at a Liquid-Vapor Interface (기액계면의 경계층 두께에 관한 연구)

  • Choi, Soon-Ho;Song, Chi-Sung;Choi, Hyun-Kyu;Lee, Jung-Hye;Kim, Kyung-Kun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1086-1091
    • /
    • 2004
  • The boundary layer is a very important characteristic of a liquid-vapor interface since it governs the heat and mass transfer phenomena across an interface. However, the thickness of a boundary layer is generally micro- or nano-sized, which requires highly accurate measurement devices and, consequently, costs the related experiments very high and time-consuming. Due to these size dependent limitations, the experiments related with a nano-scaled size have suffered from the errors and the reliability of the obtained data. This study is performed to grasp the characteristics of a liquid-vapor interface, by using a molecular dynamics method. The simulation results were compared with other studies if possible. Although other studies reported that there existed a temperature discontinuity over an interface when the system was reduced to micro- or nano-sized, we confirmed that there was no such a temperature discontinuity.

  • PDF

Isothermal Vapor-Liquid Equilibria at 333.15 K and Excess Molar Volumes and Refractive Indices at 303.15 K for the Mixtures of Propyl vinyl ether + Ethanol + Benzene (Propyl vinyl ether+Ethanol+Benzene 혼합계의 333.15 K에서의 등온 기액평형과 303.15 K에서의 과잉물성 및 굴절율편차)

  • Hwang, In-Chan;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • Alkyl vinyl ethers such as methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, butyl vinyl ether and isobutyl vinyl ether are usually used as industrial solvents and chemical intermediates in the chemical or pharmaceutical industry. Recently, they are popularly used as raw materials for polymer electrolyte membrane fuel cells and as cellulose dyeing assistants. However, very few investigations about process design and operation data were reported for alkyl vinyl ether compounds and there are no data for propyl vinyl ether(PVE) systems as far as we know. In this work, the isothermal VLE data are reported at 333.15 K for the ternary systems of {PVE + ethanol + benzene} by using headspace gas chromatography(HSGC) and these VLE data were correlated using Wilson, NRTL and UNIQUAC equations. The excess volumes($V^E$) and deviations in molar refractivity(${\Delta}R$) data are also reported for the sub binary systems {PVE + ethanol}, {ethanol + benzene} and {PVE + benzene} at 303.15 K. These data were correlated with Redlich-Kister equation. In addition, isoclines of $V^E$ and DR for ternary system {PVE + ethanol + benzene} were also calculated from Radojkovi equation.

Studies on the Estimation of Theromodynamic Properties for the Non-Azeotropic Refrigerant Mixtures (혼합냉매의 열역학적 물성치 추산에 관한 연구)

  • 김민수;김동섭;노승탁;김욱중;윤재호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1337-1348
    • /
    • 1990
  • Estimations of the thermodynamic properties are made for the selected binary non-azeotropic refrigerant mixtures including R13B1/R114, R22/R114, R12/R114, R152a/R114, R13B1/R152a and R13B1/R12 using the Peng-Robinson equation of state and mixing rules. In this study, we find that the binary interaction coefficients for the above mixtures have an effect upon the vapor-liquid equilibria and the thermodynamic properties. As the binary interaction coefficient becomes larger, the deviation from the idealized model, say, Raoult`s rule, is obvious. A correlation is proposed to relate the binary interaction coefficient to the difference between the dipole moments op each pure refrigerant. Vapor-liquid equilibrium are also accurately estimated using the binary interaction coefficient. Pressure-enthalpy and temperature-entropy relations are plotted for a certain composition ratio of each refrigerant mixture. Results show that the estimating method in this study can be applied to the investigation of the thermodynamic properties for the binary non-azeotropic refrigerant mixtures.