빅데이터를 통한 학습, GPU를 활용한 고속 컴퓨팅 및 다양한 알고리즘 개발과 더불어 기계학습은 다양한 분야에서 종래에 이루어내지 못한 뛰어난 성과를 달성하고 있다. 그동안 상용화된 통신 시스템에서 기계학습이 활성화되지 못했지만, 전례없는 다양한 서비스와 단말을 아우르는 5G 통신에서는 더욱 적극적으로 활용될 것으로 예상된다. 기계학습은 링크 적응 등 무선접속기술, 다양한 망이 혼재된 이종망 기술, 트래픽 분류 등을 위한 네트워크 기술, 침입 탐지를 위한 보안 기술 등 다양한 통신기술에서 연구됐다. 또한, 최근에는 유럽의 Public Private Partnership(5G PPP) 프로젝트를 비롯하여 다양한 그룹에서 활발히 연구되고 있으며, 컬컴/노키아/에릭슨 등 통신 관련 기업들도 적극적인 투자를 하고 있다. 본고에서는 기계학습 관련 통신기술, 연구그룹 및 기업 동향을 소개하고, 이를 통해 5G 통신 적용 가능성을 짚어본다.
콘텐츠 큐레이션 서비스를 위해서 대용량 데이터를 학습하는 과정에서 발생하는 메모리부족 문제, 학습소요시간 문제 등을 해결하기 위한 "대용량 문서학습을 위한 동적학습 파이프라인 생성기술 중 빅데이터 마이닝을 위한 점진적 학습 모델" 기술이 필요하며, 본 논문에서 제안한 콘텐츠 큐레이션 서비스는 온라인상의 수많은 콘텐츠들 중 개인의 주관이나 관점에 따라 관련 콘텐츠들을 수집, 정리하고 편집하여 이용자와 관련이 있거나 좋아할 만한 콘텐츠를 제공하는 서비스이다. 본 논문에서 설계된 모아 큐레이션 서비스는 대용량의 문서를 학습함에 있어서 메모리 부족 문제, 학습 소요시간 문제 등을 해결하기 위해 학습데이터의 용량 제한이 없는 문서를 자유롭게 학습하고 부분적인 자질추가/변경 시에 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법 등을 제시하였다.
WWW으로 대표되는 인터넷과 정보통신기술의 발달은 컴퓨터 응용 및 컴퓨팅 환경에 상당한 변화를 가져왔으며, 여러 분야에서 이들 기술이 응용되고 있다. WWW 기반의 기술들이 교육분야에 적용 및 활용되어 EDUNET, OCU(Open Cyber University) , 유니텔의 사이버 고등학교 등, 기존의 교육 패터다임을 변모시키는 새로운 형태의 고육체계 구현을 통해 교육현장에 커다란 기여를 하고 있다. 이러한 가상 학습 환경에서의 교수-학습을 효율적이고 체계적으로 준비, 실시, 관리할 수 있도록 지원해주는 시스템을 가상학습 지원시스템이라 한다. 본 논문은 가상학습환경이 새로운 교수-학습환경으로 자리매김하고 있는 가운데 교수-학습의 효율성을 향상시키기위한 지원 시스템을 어떠한 관점에서 어떤 기능을 중심으로 설계해야하는 가와 기존 교실교육에 비해 효과적 학습을 유지하고 향상시킬수 있는 핵심요인들을 도출하기 위하여 학습전략을 비교 분석하고 그 결과가 어떻게 설계에 적용될 수 있는가를 제시하고자한다.
인공 신경망을 통한 심층 학습 모델의 발전은 컴퓨터 비전, 자연언어 이해 문제들에서 인간을 뛰어넘는 성능을 보이고 있다. 특히 트랜스포머[1] 기반의 사전 학습 모델은 질의응답, 대화문과 같은 자연언어 이해 문제에서 최근 높은 성능을 보이고 있다. 하지만 트랜스포머 기반의 모델과 같은 심층 학습 모델의 급격한 발전 양상에 비해, 이의 동작 방식은 상대적으로 잘 알려져 있지 않다. 인공 신경망을 통한 심층 학습 모델을 해석하는 방법으로 모델의 예측 값과 실제 값이 얼마나 일치하는지를 측정하는 모델의 보정(Calibration)이 있다. 본 연구는 한국어 기반의 심층학습 모델의 해석을 위해 모델의 보정을 수행하였다. 그리고 사전 학습된 한국어 언어 모델이 문장이 내포하는 애매성을 잘 파악하는지의 여부를 확인하고, 완화 기법들을 적용하여 문장의 애매성을 확신 수준을 통해 정량적으로 출력할 수 있도록 하였다. 또한 한국어의 문법적 특징으로 인한 문장의 의미 변화를 모델 보정 관점에서 평가하여 한국어의 문법적 특징을 심층학습 언어 모델이 잘 이해하고 있는지를 정량적으로 확인하였다.
기술융합은 연구자간 사회적 상호작용의 결과 일어나는 일종의 기술혁신 현상인데, 융합과정에서 수명주기가 존재한다. 기술능력을 가진 개인이나 조직의 학습${\rightarrow}$기술의 통합 및 혁신 ${\rightarrow}$안정화 과정을 거치는 융합 수명주기를 갖는다. 조직학습(집단학습)은 기술융합의 주요한 성공요소로 작용한다. 이 때문에 기술융합의 성공을 위해서는 프로젝트 리더의 리더십이 중요하다. 기술융합 프로젝트 리더는 개별연구자나 연구그룹이 보유하는 인지맵(cognitive map)을 통합하는 노력이 필요하다. 이를 위해서는 조직 및 개인의 네트워크 구축과 학습역량 강화가 중요하다. 정부는 기술융합 촉진을 위해서 학회, 협회 등 중심연계조직을 육성해야 한다. 그리고 프로젝트 리더의 리더십 함양프로그램을 운영해야 한다. 장기적인 관점에서는 학제간 벽을 뛰어 넘는 대학원 교육의 혁신이 필요하다. 공공부문은 창의적이고 개방적인 연구환경을 조성해야 하겠다.
본 연구는 대전소재 대학평생교육원 성인학습자 960명을 대상으로 성인학습자의 학습성과 영향요인에 관한 구조분석을 실시하였다. 연구결과 첫째, 성인학습자의 학습자특성과 교육기관특성은 학습몰입과 학습만족도를 매개하여 학습성과에 간접적인 영향을 미쳤다. 둘째, 성인학습자의 학습자특성은 학습몰입 및 학습만족에 직접적인 영향을 미쳤으며, 교육기관특성도 학습몰입 및 학습만족에 직접적인 영향을 미쳤다. 셋째, 학습몰입은 학습만족과 학습성과에 직접적인 영향을 미쳤다. 넷째, 학습만족은 학습성과에 직접적인 영향을 미쳤다. 이러한 연구결과를 종합하면 학습성과는 학습자특성, 교육기관특성, 학습만족에 직접적인 영향을 받고 있음을 알 수 있었다. 또한 학습성과는 학습몰입과 학습만족을 매개하여 간접적인 영향을 받고 있음을 알 수 있었다. 따라서 대학평생교육원은 보다 다양하고 전문화된 평생교육프로그램 개발 및 제공, 수업분위기 조성, 교육시설 환경개선, 우수 교강사 확보, 교직원의 원스톱 행정서비스 등 학습성과를 향상시키기 위한 전략이 강화되어야 할 것이다.
인터넷을 통한 사용자의 선호도를 분석하고 협력적 여과 및 내용기반 여과 기술을 결합 이용하여 유머문서를 추천하는 MrHumor 시스템을 구축하였다. 유머문서 추천 기술은 다양한 아이템에 대한 여과 및 추천 기술로 확장되어 인터넷을 통한 과다 정보 시대에 필요한 소프트봇 혹은 지능형 에이전트 기술에 적용될 수 있다. MrHumor 추천시스템은 적응형 학습 시스템으로서 새로운 사용자의 선호도에 대한 학습량과 추천시기에 따라 이용할 추천방식이 다른 성능을 보이는데 여러 가지 상황에서도 적절한 동작을 보이기 위하여 MrHumor에서는 은닉변수 모델을 이용하여 사용자의 인구통계적 정보와 문서의 내용적 특징간의 관계를 학습하여 초기 추천을 행하고 SVM을 이용하여 개인의 선호도를 학습한 내용 기반의 여과와 적응형 k-NN모델을 이용한 협력적 여과를 결합하여 추천을 수행한다. 제안된 방식에 의한 추천 성능은 3방식이 각각 이용된 경우에 비해 안정적이고 높은 예측 정확도를 보인다.
공정 데이터를 실시간으로 수집할 수 있는 스마트 팩토리의 장점을 활용하여, 일반적인 기계 학습 대신 강화 학습을 사용한다면 미리 요구되는 훈련 데이터 없이 행동 제어를 할 수 있다. 하지만, 현실 세계에서는 물리적 마모, 시간적 문제 등으로 인해 수천만 번 이상의 반복 학습이 불가능하다. 따라서, 본 논문에서는 시뮬레이터를 활용해 스마트 팩토리 분야에서 복잡한 환경 중 하나인 이송 설비에 초점을 둔 그리드 분류 시스템을 개발하고 협력적 다중 에이전트 기반의 강화 학습을 설계하여 효율적인 행동 제어가 가능함을 입증한다.
최근 한류의 유행과 결혼 이주여성 등의 증가로 인해 다양한 첨단 미디어를 통하여 세계 각국에서 외국어로서의 한국어를 배우려는 학습자의 수가 증가하고 있다. 교수자와 학습자간의 교육환경은 다양한 학습미디어의 발전에 따라 학습자가 수동적인 자세에서 벗어나 능동적인 학습 방법으로 진화되고 있다. 특히 다양한 멀티미디어 기기와 관련 기술들의 발전은 기존의 교육방법론적 환경에서 벗어나, 새로운 기술에 기반을 둔 학습자 중심의 교육방법의 개선과 제시에는 현실적으로 고려해야하는 여러 사항과 문제점이 존재한다. 따라서 이 논문에서는 최신 기술에 기반을 둔 모바일을 이용한 엠러닝(M-Learning) 기반의 한국어교육 콘텐츠관리를 위한 시스템을 제안하고자 한다.
가상교육 원격교육이 미래 교육의 확고한 대안으로 제안되고 있는 이 때 , 이런 학습 코스웨어들을 보급하기만 하면 교사와 학생들이 많이 사용할 것이고 이를 통해서 수업의 효과성과 학습의 질이 향상되어, 궁극적으로는 지식정보사회가 요구하는 경쟁력을 갖춘 인력이 배출될 것이다라는 가정이 현재의 교육 이데올로기이다. 그러나 이들에 대한 다양한 비팝과 역 기능들을 수렴하여 효과적인 가상교육이 이루어 져야한다. 가상교육이 단순히 정보를 제공하는 기술적 도구가 아닌 '교육'이 되기 위해서 교수-학습 내용의 질을 우선적으로 확보할 것이 요청된다. 이러한 요청에 대한 가상교육 학습의 구조와 요소를 고려한 학습요소구성을 위한 통합과 효과성을 제고 할 수 있는 전략을 제안하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.