• Title/Summary/Keyword: 기술마케팅

Search Result 1,380, Processing Time 0.034 seconds

A Study on the Entrepreneurial Intention of College Students in the Entertainment Industry with Idea Education and Support for Startup Infrastructure (아이디어 교육 및 창업 인프라 지원이 엔터테인먼트 산업 분야에 대한 대학생 창업의도 연구)

  • Lee, Ji-Hun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.8
    • /
    • pp.19-31
    • /
    • 2021
  • This study tried to identify the characteristics of college students' entrepreneurial intentions in the entertainment industry, focusing on existing literature studies. Based on this, it was intended to suggest realistic educational alternatives for university student start-ups and implications for start-up management to university start-up officials and those in charge of national start-up support policy. Therefore, the implications of this study are as follows. First, technology(item) for idea creation education, which is an essential element in the entertainment industry, how to connect ideas and products, technology methods that can increase content value, and user characteristics education within the entertainment industry will need to be continued. In addition, along with the idea education, it is necessary to increase the understanding of start-up business management such as financing, human resource management, marketing, and operation management, and furthermore, confidence education should be provided so that the possibility of success in an entertainment start-up and a sense of adventure in a new job can be developed. Second, the space and equipment necessary for start-up (club room, student start-up room, entertainment-related equipment, etc.) should be provided centering on the opinion survey of students who are interested in starting a business, and various regulations of universities and government for student start-up should be relaxed. will have to In addition, education for the formation of entrepreneurial knowledge inside and outside of the school, special lectures and consultations by experts, and on-the-spot education, etc., should be made to create more practical entrepreneurial knowledge. something to do. Third, for students wishing to start a business in the entertainment industry, it is necessary to inform their families about the field situation of the entertainment industry accurately so that their children can develop a positive perception rather than a negative perception when choosing a business field. In addition, by promoting various successful cases of college students to their families after starting a business, families should be encouraged so that their children can develop a challenging spirit about starting a business. Fourth, it should be possible to form continuous clubs or gatherings with friends who wish to start a business in the entertainment industry, and furthermore, an opportunity to listen to the opinions of friends who actually started a business through these meetings should be provided. In addition, the meeting and the formation of friends should create a place for discussion about writing a business plan, how to succeed in starting a business, and management of startups, and psychological stimulation activities should be conducted so that each other's will to start a business arises. Fifth, various knowledge related to start-up (methods for securing funds, management of start-up organizations, grasping information about the market in which they want to start a business, etc.) should be cultivated, and how to write a business plan for the various entertainment industry fields they want to start up. You will also need to train them to be practical. Also, based on this knowledge formation, students themselves should be able to respond to risks and changes that may occur in entrepreneurship. Lastly, it is necessary to increase the understanding of business start-up management, and various psychological stimulation activities are needed to make the confidence and fear of starting a business disappear.

An Empirical Study on Influencing Factors of Switching Intention from Online Shopping to Webrooming (온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인에 대한 연구)

  • Choi, Hyun-Seung;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.19-41
    • /
    • 2016
  • Recently, the proliferation of mobile devices such as smartphones and tablet personal computers and the development of information communication technologies (ICT) have led to a big trend of a shift from single-channel shopping to multi-channel shopping. With the emergence of a "smart" group of consumers who want to shop in more reasonable and convenient ways, the boundaries apparently dividing online and offline shopping have collapsed and blurred more than ever before. Thus, there is now fierce competition between online and offline channels. Ever since the emergence of online shopping, a major type of multi-channel shopping has been "showrooming," where consumers visit offline stores to examine products before buying them online. However, because of the growing use of smart devices and the counterattack of offline retailers represented by omni-channel marketing strategies, one of the latest huge trends of shopping is "webrooming," where consumers visit online stores to examine products before buying them offline. This has become a threat to online retailers. In this situation, although it is very important to examine the influencing factors for switching from online shopping to webrooming, most prior studies have mainly focused on a single- or multi-channel shopping pattern. Therefore, this study thoroughly investigated the influencing factors on customers switching from online shopping to webrooming in terms of both the "search" and "purchase" processes through the application of a push-pull-mooring (PPM) framework. In order to test the research model, 280 individual samples were gathered from undergraduate and graduate students who had actual experience with webrooming. The results of the structural equation model (SEM) test revealed that the "pull" effect is strongest on the webrooming intention rather than the "push" or "mooring" effects. This proves a significant relationship between "attractiveness of webrooming" and "webrooming intention." In addition, the results showed that both the "perceived risk of online search" and "perceived risk of online purchase" significantly affect "distrust of online shopping." Similarly, both "perceived benefit of multi-channel search" and "perceived benefit of offline purchase" were found to have significant effects on "attractiveness of webrooming" were also found. Furthermore, the results indicated that "online purchase habit" is the only influencing factor that leads to "online shopping lock-in." The theoretical implications of the study are as follows. First, by examining the multi-channel shopping phenomenon from the perspective of "shopping switching" from online shopping to webrooming, this study complements the limits of the "channel switching" perspective, represented by multi-channel freeriding studies that merely focused on customers' channel switching behaviors from one to another. While extant studies with a channel switching perspective have focused on only one type of multi-channel shopping, where consumers just move from one particular channel to different channels, a study with a shopping switching perspective has the advantage of comprehensively investigating how consumers choose and navigate among diverse types of single- or multi-channel shopping alternatives. In this study, only limited shopping switching behavior from online shopping to webrooming was examined; however, the results should explain various phenomena in a more comprehensive manner from the perspective of shopping switching. Second, this study extends the scope of application of the push-pull-mooring framework, which is quite commonly used in marketing research to explain consumers' product switching behaviors. Through the application of this framework, it is hoped that more diverse shopping switching behaviors can be examined in future research. This study can serve a stepping stone for future studies. One of the most important practical implications of the study is that it may help single- and multi-channel retailers develop more specific customer strategies by revealing the influencing factors of webrooming intention from online shopping. For example, online single-channel retailers can ease the distrust of online shopping to prevent consumers from churning by reducing the perceived risk in terms of online search and purchase. On the other hand, offline retailers can develop specific strategies to increase the attractiveness of webrooming by letting customers perceive the benefits of multi-channel search or offline purchase. Although this study focused only on customers switching from online shopping to webrooming, the results can be expanded to various types of shopping switching behaviors embedded in single- and multi-channel shopping environments, such as showrooming and mobile shopping.

A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings (종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템)

  • Ku, Min Jung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.85-109
    • /
    • 2018
  • Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.

Design of Client-Server Model For Effective Processing and Utilization of Bigdata (빅데이터의 효과적인 처리 및 활용을 위한 클라이언트-서버 모델 설계)

  • Park, Dae Seo;Kim, Hwa Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.109-122
    • /
    • 2016
  • Recently, big data analysis has developed into a field of interest to individuals and non-experts as well as companies and professionals. Accordingly, it is utilized for marketing and social problem solving by analyzing the data currently opened or collected directly. In Korea, various companies and individuals are challenging big data analysis, but it is difficult from the initial stage of analysis due to limitation of big data disclosure and collection difficulties. Nowadays, the system improvement for big data activation and big data disclosure services are variously carried out in Korea and abroad, and services for opening public data such as domestic government 3.0 (data.go.kr) are mainly implemented. In addition to the efforts made by the government, services that share data held by corporations or individuals are running, but it is difficult to find useful data because of the lack of shared data. In addition, big data traffic problems can occur because it is necessary to download and examine the entire data in order to grasp the attributes and simple information about the shared data. Therefore, We need for a new system for big data processing and utilization. First, big data pre-analysis technology is needed as a way to solve big data sharing problem. Pre-analysis is a concept proposed in this paper in order to solve the problem of sharing big data, and it means to provide users with the results generated by pre-analyzing the data in advance. Through preliminary analysis, it is possible to improve the usability of big data by providing information that can grasp the properties and characteristics of big data when the data user searches for big data. In addition, by sharing the summary data or sample data generated through the pre-analysis, it is possible to solve the security problem that may occur when the original data is disclosed, thereby enabling the big data sharing between the data provider and the data user. Second, it is necessary to quickly generate appropriate preprocessing results according to the level of disclosure or network status of raw data and to provide the results to users through big data distribution processing using spark. Third, in order to solve the problem of big traffic, the system monitors the traffic of the network in real time. When preprocessing the data requested by the user, preprocessing to a size available in the current network and transmitting it to the user is required so that no big traffic occurs. In this paper, we present various data sizes according to the level of disclosure through pre - analysis. This method is expected to show a low traffic volume when compared with the conventional method of sharing only raw data in a large number of systems. In this paper, we describe how to solve problems that occur when big data is released and used, and to help facilitate sharing and analysis. The client-server model uses SPARK for fast analysis and processing of user requests. Server Agent and a Client Agent, each of which is deployed on the Server and Client side. The Server Agent is a necessary agent for the data provider and performs preliminary analysis of big data to generate Data Descriptor with information of Sample Data, Summary Data, and Raw Data. In addition, it performs fast and efficient big data preprocessing through big data distribution processing and continuously monitors network traffic. The Client Agent is an agent placed on the data user side. It can search the big data through the Data Descriptor which is the result of the pre-analysis and can quickly search the data. The desired data can be requested from the server to download the big data according to the level of disclosure. It separates the Server Agent and the client agent when the data provider publishes the data for data to be used by the user. In particular, we focus on the Big Data Sharing, Distributed Big Data Processing, Big Traffic problem, and construct the detailed module of the client - server model and present the design method of each module. The system designed on the basis of the proposed model, the user who acquires the data analyzes the data in the desired direction or preprocesses the new data. By analyzing the newly processed data through the server agent, the data user changes its role as the data provider. The data provider can also obtain useful statistical information from the Data Descriptor of the data it discloses and become a data user to perform new analysis using the sample data. In this way, raw data is processed and processed big data is utilized by the user, thereby forming a natural shared environment. The role of data provider and data user is not distinguished, and provides an ideal shared service that enables everyone to be a provider and a user. The client-server model solves the problem of sharing big data and provides a free sharing environment to securely big data disclosure and provides an ideal shared service to easily find big data.

A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products (부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로)

  • Kim, Dongsung;Kim, Kitae;Kim, Jongwoo;Park, Steve
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.93-108
    • /
    • 2014
  • To support business decision making, interests and efforts to analyze and use transaction data in different perspectives are increasing. Such efforts are not only limited to customer management or marketing, but also used for monitoring and detecting fraud transactions. Fraud transactions are evolving into various patterns by taking advantage of information technology. To reflect the evolution of fraud transactions, there are many efforts on fraud detection methods and advanced application systems in order to improve the accuracy and ease of fraud detection. As a case of fraud detection, this study aims to provide effective fraud detection methods for auction exception agricultural products in the largest Korean agricultural wholesale market. Auction exception products policy exists to complement auction-based trades in agricultural wholesale market. That is, most trades on agricultural products are performed by auction; however, specific products are assigned as auction exception products when total volumes of products are relatively small, the number of wholesalers is small, or there are difficulties for wholesalers to purchase the products. However, auction exception products policy makes several problems on fairness and transparency of transaction, which requires help of fraud detection. In this study, to generate fraud detection rules, real huge agricultural products trade transaction data from 2008 to 2010 in the market are analyzed, which increase more than 1 million transactions and 1 billion US dollar in transaction volume. Agricultural transaction data has unique characteristics such as frequent changes in supply volumes and turbulent time-dependent changes in price. Since this was the first trial to identify fraud transactions in this domain, there was no training data set for supervised learning. So, fraud detection rules are generated using outlier detection approach. We assume that outlier transactions have more possibility of fraud transactions than normal transactions. The outlier transactions are identified to compare daily average unit price, weekly average unit price, and quarterly average unit price of product items. Also quarterly averages unit price of product items of the specific wholesalers are used to identify outlier transactions. The reliability of generated fraud detection rules are confirmed by domain experts. To determine whether a transaction is fraudulent or not, normal distribution and normalized Z-value concept are applied. That is, a unit price of a transaction is transformed to Z-value to calculate the occurrence probability when we approximate the distribution of unit prices to normal distribution. The modified Z-value of the unit price in the transaction is used rather than using the original Z-value of it. The reason is that in the case of auction exception agricultural products, Z-values are influenced by outlier fraud transactions themselves because the number of wholesalers is small. The modified Z-values are called Self-Eliminated Z-scores because they are calculated excluding the unit price of the specific transaction which is subject to check whether it is fraud transaction or not. To show the usefulness of the proposed approach, a prototype of fraud transaction detection system is developed using Delphi. The system consists of five main menus and related submenus. First functionalities of the system is to import transaction databases. Next important functions are to set up fraud detection parameters. By changing fraud detection parameters, system users can control the number of potential fraud transactions. Execution functions provide fraud detection results which are found based on fraud detection parameters. The potential fraud transactions can be viewed on screen or exported as files. The study is an initial trial to identify fraud transactions in Auction Exception Agricultural Products. There are still many remained research topics of the issue. First, the scope of analysis data was limited due to the availability of data. It is necessary to include more data on transactions, wholesalers, and producers to detect fraud transactions more accurately. Next, we need to extend the scope of fraud transaction detection to fishery products. Also there are many possibilities to apply different data mining techniques for fraud detection. For example, time series approach is a potential technique to apply the problem. Even though outlier transactions are detected based on unit prices of transactions, however it is possible to derive fraud detection rules based on transaction volumes.

An Ontology Model for Public Service Export Platform (공공 서비스 수출 플랫폼을 위한 온톨로지 모형)

  • Lee, Gang-Won;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.149-161
    • /
    • 2014
  • The export of domestic public services to overseas markets contains many potential obstacles, stemming from different export procedures, the target services, and socio-economic environments. In order to alleviate these problems, the business incubation platform as an open business ecosystem can be a powerful instrument to support the decisions taken by participants and stakeholders. In this paper, we propose an ontology model and its implementation processes for the business incubation platform with an open and pervasive architecture to support public service exports. For the conceptual model of platform ontology, export case studies are used for requirements analysis. The conceptual model shows the basic structure, with vocabulary and its meaning, the relationship between ontologies, and key attributes. For the implementation and test of the ontology model, the logical structure is edited using Prot$\acute{e}$g$\acute{e}$ editor. The core engine of the business incubation platform is the simulator module, where the various contexts of export businesses should be captured, defined, and shared with other modules through ontologies. It is well-known that an ontology, with which concepts and their relationships are represented using a shared vocabulary, is an efficient and effective tool for organizing meta-information to develop structural frameworks in a particular domain. The proposed model consists of five ontologies derived from a requirements survey of major stakeholders and their operational scenarios: service, requirements, environment, enterprise, and county. The service ontology contains several components that can find and categorize public services through a case analysis of the public service export. Key attributes of the service ontology are composed of categories including objective, requirements, activity, and service. The objective category, which has sub-attributes including operational body (organization) and user, acts as a reference to search and classify public services. The requirements category relates to the functional needs at a particular phase of system (service) design or operation. Sub-attributes of requirements are user, application, platform, architecture, and social overhead. The activity category represents business processes during the operation and maintenance phase. The activity category also has sub-attributes including facility, software, and project unit. The service category, with sub-attributes such as target, time, and place, acts as a reference to sort and classify the public services. The requirements ontology is derived from the basic and common components of public services and target countries. The key attributes of the requirements ontology are business, technology, and constraints. Business requirements represent the needs of processes and activities for public service export; technology represents the technological requirements for the operation of public services; and constraints represent the business law, regulations, or cultural characteristics of the target country. The environment ontology is derived from case studies of target countries for public service operation. Key attributes of the environment ontology are user, requirements, and activity. A user includes stakeholders in public services, from citizens to operators and managers; the requirements attribute represents the managerial and physical needs during operation; the activity attribute represents business processes in detail. The enterprise ontology is introduced from a previous study, and its attributes are activity, organization, strategy, marketing, and time. The country ontology is derived from the demographic and geopolitical analysis of the target country, and its key attributes are economy, social infrastructure, law, regulation, customs, population, location, and development strategies. The priority list for target services for a certain country and/or the priority list for target countries for a certain public services are generated by a matching algorithm. These lists are used as input seeds to simulate the consortium partners, and government's policies and programs. In the simulation, the environmental differences between Korea and the target country can be customized through a gap analysis and work-flow optimization process. When the process gap between Korea and the target country is too large for a single corporation to cover, a consortium is considered an alternative choice, and various alternatives are derived from the capability index of enterprises. For financial packages, a mix of various foreign aid funds can be simulated during this stage. It is expected that the proposed ontology model and the business incubation platform can be used by various participants in the public service export market. It could be especially beneficial to small and medium businesses that have relatively fewer resources and experience with public service export. We also expect that the open and pervasive service architecture in a digital business ecosystem will help stakeholders find new opportunities through information sharing and collaboration on business processes.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

Self-Regulatory Mode Effects on Emotion and Customer's Response in Failed Services - Focusing on the moderate effect of attribution processing - (고객의 자기조절성향이 서비스 실패에 따른 부정적 감정과 고객반응에 미치는 영향 - 귀인과정에 따른 조정적 역할을 중심으로 -)

  • Sung, Hyung-Suk;Han, Sang-Lin
    • Asia Marketing Journal
    • /
    • v.12 no.2
    • /
    • pp.83-110
    • /
    • 2010
  • Dissatisfied customers may express their dissatisfaction behaviorally. These behavioral responses may impact the firms' profitability. How do we model the impact of self regulatory orientation on emotions and subsequent customer behaviors? Obviously, the positive and negative emotions experienced in these situations will influence the overall degree of satisfaction or dissatisfaction with the service(Zeelenberg and Pieters 1999). Most likely, these specific emotions will also partly determine the subsequent behavior in relation to the service and service provider, such as the likelihood of complaining, the degree to which customers will switch or repurchase, and the extent of word of mouth communication they will engage in(Zeelenberg and Pieters 2004). This study investigates the antecedents, consequences of negative consumption emotion and the moderate effect of attribution processing in an integrated model(self regulatory mode → specific emotions → behavioral responses). We focused on the fact that regret and disappointment have effects on consumer behavior. Especially, There are essentially two approaches in this research: the valence based approach and the specific emotions approach. The authors indicate theoretically and show empirically that it matters to distinguish these approaches in services research. and The present studies examined the influence of two regulatory mode concerns(Locomotion orientation and Assessment orientation) with making comparisons on experiencing post decisional regret and disappointment(Pierro, Kruglanski, and Higgins 2006; Pierro et al. 2008). When contemplating a decision with a negative outcome, it was predicted that high (vs low) locomotion would induce more disappointment than regret, whereas high (vs low) assessment would induce more regret than disappointment. The validity of the measurement scales was also confirmed by evaluations provided by the participating respondents and an independent advisory panel; samples provided recommendations throughout the primary, exploratory phases of the study. The resulting goodness of fit statistics were RMR or RMSEA of 0.05, GFI and AGFI greater than 0.9, and a chi-square with a 175.11. The indicators of the each constructs were very good measures of variables and had high convergent validity as evidenced by the reliability with a more than 0.9. Some items were deleted leaving those that reflected the cognitive dimension of importance rather than the dimension. The indicators were very good measures and had convergent validity as evidenced by the reliability of 0.9. These results for all constructs indicate the measurement fits the sample data well and is adequate for use. The scale for each factor was set by fixing the factor loading to one of its indicator variables and then applying the maximum likelihood estimation method. The results of the analysis showed that directions of the effects in the model are ultimately supported by the theory underpinning the causal linkages of the model. This research proposed 6 hypotheses on 6 latent variables and tested through structural equation modeling. 6 alternative measurements were compared through statistical significance test of the paths of research model and the overall fitting level of structural equation model and the result was successful. Also, Locomotion orientation more positively influences disappointment when internal attribution is high than low and Assessment orientation more positively influences regret when external attribution is high than low. In sum, The results of our studies suggest that assessment and locomotion concerns, both as chronic individual predispositions and as situationally induced states, influence the amount of people's experienced regret and disappointment. These findings contribute to our understanding of regulatory mode, regret, and disappointment. In previous studies of regulatory mode, relatively little attention has been paid to the post actional evaluative phase of self regulation. The present findings indicate that assessment concerns and locomotion concerns are clearly distinct in this phase, with individuals higher in assessment delving more into possible alternatives to past actions and individuals higher in locomotion engaging less in such reflective thought. What this suggests is that, separate from decreasing the amount of counterfactual thinking per se, individuals with locomotion concerns want to move on, to get on with it. Regret is about the past and not the future. Thus, individuals with locomotion concerns are less likely to experience regret. The results supported our predictions. We discuss the implications of these findings for the nature of regret and disappointment from the perspective of their relation to regulatory mode. Also, self regulatory mode and the specific emotions(disappointment and regret) were assessed and their influence on customers' behavioral responses(inaction, word of mouth) was examined, using a sample of 275 customers. It was found that emotions have a direct impact on behavior over and above the effects of negative emotions and customer behavior. Hence, We argue against incorporating emotions such as regret and disappointment into a specific response measure and in favor of a specific emotions approach on self regulation. Implications for services marketing practice and theory are discussed.

  • PDF

An Exploratory Study on the Competition Patterns Between Internet Sites in Korea (한국 인터넷사이트들의 산업별 경쟁유형에 대한 탐색적 연구)

  • Park, Yoonseo;Kim, Yongsik
    • Asia Marketing Journal
    • /
    • v.12 no.4
    • /
    • pp.79-111
    • /
    • 2011
  • Digital economy has grown rapidly so that the new business area called 'Internet business' has been dramatically extended as time goes on. However, in the case of Internet business, market shares of individual companies seem to fluctuate very extremely. Thus marketing managers who operate the Internet sites have seriously observed the competition structure of the Internet business market and carefully analyzed the competitors' behavior in order to achieve their own business goals in the market. The newly created Internet business might differ from the offline ones in management styles, because it has totally different business circumstances when compared with the existing offline businesses. Thus, there should be a lot of researches for finding the solutions about what the features of Internet business are and how the management style of those Internet business companies should be changed. Most marketing literatures related to the Internet business have focused on individual business markets. Specifically, many researchers have studied the Internet portal sites and the Internet shopping mall sites, which are the most general forms of Internet business. On the other hand, this study focuses on the entire Internet business industry to understand the competitive circumstance of online market. This approach makes it possible not only to have a broader view to comprehend overall e-business industry, but also to understand the differences in competition structures among Internet business markets. We used time-series data of Internet connection rates by consumers as the basic data to figure out the competition patterns in the Internet business markets. Specifically, the data for this research was obtained from one of Internet ranking sites, 'Fian'. The Internet business ranking data is obtained based on web surfing record of some pre-selected sample group where the possibility of double-count for page-views is controlled by method of same IP check. The ranking site offers several data which are very useful for comparison and analysis of competitive sites. The Fian site divides the Internet business areas into 34 area and offers market shares of big 5 sites which are on high rank in each category daily. We collected the daily market share data about Internet sites on each area from April 22, 2008 to August 5, 2008, where some errors of data was found and 30 business area data were finally used for our research after the data purification. This study performed several empirical analyses in focusing on market shares of each site to understand the competition among sites in Internet business of Korea. We tried to perform more statistically precise analysis for looking into business fields with similar competitive structures by applying the cluster analysis to the data. The research results are as follows. First, the leading sites in each area were classified into three groups based on averages and standard deviations of daily market shares. The first group includes the sites with the lowest market shares, which give more increased convenience to consumers by offering the Internet sites as complimentary services for existing offline services. The second group includes sites with medium level of market shares, where the site users are limited to specific small group. The third group includes sites with the highest market shares, which usually require online registration in advance and have difficulty in switching to another site. Second, we analyzed the second place sites in each business area because it may help us understand the competitive power of the strongest competitor against the leading site. The second place sites in each business area were classified into four groups based on averages and standard deviations of daily market shares. The four groups are the sites showing consistent inferiority compared to the leading sites, the sites with relatively high volatility and medium level of shares, the sites with relatively low volatility and medium level of shares, the sites with relatively low volatility and high level of shares whose gaps are not big compared to the leading sites. Except 'web agency' area, these second place sites show relatively stable shares below 0.1 point of standard deviation. Third, we also classified the types of relative strength between leading sites and the second place sites by applying the cluster analysis to the gap values of market shares between two sites. They were also classified into four groups, the sites with the relatively lowest gaps even though the values of standard deviation are various, the sites with under the average level of gaps, the sites with over the average level of gaps, the sites with the relatively higher gaps and lower volatility. Then we also found that while the areas with relatively bigger gap values usually have smaller standard deviation values, the areas with very small differences between the first and the second sites have a wider range of standard deviation values. The practical and theoretical implications of this study are as follows. First, the result of this study might provide the current market participants with the useful information to understand the competitive circumstance of the market and build the effective new business strategy for the market success. Also it might be useful to help new potential companies find a new business area and set up successful competitive strategies. Second, it might help Internet marketing researchers take a macro view of the overall Internet market so that make possible to begin the new studies on overall Internet market beyond individual Internet market studies.

  • PDF

A Study on the Effect of Booth Recommendation System on Exhibition Visitors Unplanned Visit Behavior (전시장 참관객의 계획되지 않은 방문행동에 있어서 부스추천시스템의 영향에 대한 연구)

  • Chung, Nam-Ho;Kim, Jae-Kyung
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.175-191
    • /
    • 2011
  • With the MICE(Meeting, Incentive travel, Convention, Exhibition) industry coming into the spotlight, there has been a growing interest in the domestic exhibition industry. Accordingly, in Korea, various studies of the industry are being conducted to enhance exhibition performance as in the United States or Europe. Some studies are focusing particularly on analyzing visiting patterns of exhibition visitors using intelligent information technology in consideration of the variations in effects of watching exhibitions according to the exhibitory environment or technique, thereby understanding visitors and, furthermore, drawing the correlations between exhibiting businesses and improving exhibition performance. However, previous studies related to booth recommendation systems only discussed the accuracy of recommendation in the aspect of a system rather than determining changes in visitors' behavior or perception by recommendation. A booth recommendation system enables visitors to visit unplanned exhibition booths by recommending visitors suitable ones based on information about visitors' visits. Meanwhile, some visitors may be satisfied with their unplanned visits, while others may consider the recommending process to be cumbersome or obstructive to their free observation. In the latter case, the exhibition is likely to produce worse results compared to when visitors are allowed to freely observe the exhibition. Thus, in order to apply a booth recommendation system to exhibition halls, the factors affecting the performance of the system should be generally examined, and the effects of the system on visitors' unplanned visiting behavior should be carefully studied. As such, this study aims to determine the factors that affect the performance of a booth recommendation system by reviewing theories and literature and to examine the effects of visitors' perceived performance of the system on their satisfaction of unplanned behavior and intention to reuse the system. Toward this end, the unplanned behavior theory was adopted as the theoretical framework. Unplanned behavior can be defined as "behavior that is done by consumers without any prearranged plan". Thus far, consumers' unplanned behavior has been studied in various fields. The field of marketing, in particular, has focused on unplanned purchasing among various types of unplanned behavior, which has been often confused with impulsive purchasing. Nevertheless, the two are different from each other; while impulsive purchasing means strong, continuous urges to purchase things, unplanned purchasing is behavior with purchasing decisions that are made inside a store, not before going into one. In other words, all impulsive purchases are unplanned, but not all unplanned purchases are impulsive. Then why do consumers engage in unplanned behavior? Regarding this question, many scholars have made many suggestions, but there has been a consensus that it is because consumers have enough flexibility to change their plans in the middle instead of developing plans thoroughly. In other words, if unplanned behavior costs much, it will be difficult for consumers to change their prearranged plans. In the case of the exhibition hall examined in this study, visitors learn the programs of the hall and plan which booth to visit in advance. This is because it is practically impossible for visitors to visit all of the various booths that an exhibition operates due to their limited time. Therefore, if the booth recommendation system proposed in this study recommends visitors booths that they may like, they can change their plans and visit the recommended booths. Such visiting behavior can be regarded similarly to consumers' visit to a store or tourists' unplanned behavior in a tourist spot and can be understand in the same context as the recent increase in tourism consumers' unplanned behavior influenced by information devices. Thus, the following research model was established. This research model uses visitors' perceived performance of a booth recommendation system as the parameter, and the factors affecting the performance include trust in the system, exhibition visitors' knowledge levels, expected personalization of the system, and the system's threat to freedom. In addition, the causal relation between visitors' satisfaction of their perceived performance of the system and unplanned behavior and their intention to reuse the system was determined. While doing so, trust in the booth recommendation system consisted of 2nd order factors such as competence, benevolence, and integrity, while the other factors consisted of 1st order factors. In order to verify this model, a booth recommendation system was developed to be tested in 2011 DMC Culture Open, and 101 visitors were empirically studied and analyzed. The results are as follows. First, visitors' trust was the most important factor in the booth recommendation system, and the visitors who used the system perceived its performance as a success based on their trust. Second, visitors' knowledge levels also had significant effects on the performance of the system, which indicates that the performance of a recommendation system requires an advance understanding. In other words, visitors with higher levels of understanding of the exhibition hall learned better the usefulness of the booth recommendation system. Third, expected personalization did not have significant effects, which is a different result from previous studies' results. This is presumably because the booth recommendation system used in this study did not provide enough personalized services. Fourth, the recommendation information provided by the booth recommendation system was not considered to threaten or restrict one's freedom, which means it is valuable in terms of usefulness. Lastly, high performance of the booth recommendation system led to visitors' high satisfaction levels of unplanned behavior and intention to reuse the system. To sum up, in order to analyze the effects of a booth recommendation system on visitors' unplanned visits to a booth, empirical data were examined based on the unplanned behavior theory and, accordingly, useful suggestions for the establishment and design of future booth recommendation systems were made. In the future, further examination should be conducted through elaborate survey questions and survey objects.