Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.444-444
/
2023
하천 및 저수지와 같은 공간의 수체 탐지는 수자원 관리에서 매우 중요하며, 유역의 수문학적 과정을 이해하는데 도움을 준다. 수문학적 데이터 수집은 우량계, 수위계와 같은 물리적 인프라의 배치가 필요하다. 그러나 상대적으로 저개발된 국가는 수문학적 측정을 위한 인프라가 매우 미흡한 것이 현실이며, 북한과 같은 비접근 지역에 대한 수문학적 과정을 분석하는데는 한계가 있다. 인공위성 원격탐사 센서 중 SAR영상은 지표면에 직접 전파를 방사하고 산란되어 돌아오는 신호를 수신하여 영상을 만들기 때문에 일반적인 광학영상과는 달리 햇빛의 유무와 강우, 구름여부 등의 기상 조건의 영향을 거의 받지 않는 장점이 있다. 또한 국내와 같이 계절적인 요인과 인간활동에 의해 변화되는 물 순환을 SAR 영상은 지표수의 계절적 및 연간 변동성을 모니터링하는데 매우 유용한 자료로 평가되고 있다. 본 연구는 SAR영상을 이용하여 국내의 검증 가능한 지역의 저수지 수면적 변화를 모니터링하고 저수지 수면적과 저수량 분석을 수행하는 것을 목적으로 하였다. 분석자료인 SAR영상은 ESA의 Sentinel-1영상을 2022년 4월부터 2022년 11월의 자료를 수집하여 소양강댐 저수지 수면적과 저수량과의 관계식을 도출하였다. 수체 추출을 위한 SAR 영상은 특히 수로의 일부 가장자리와 홍수터의 식물 존재로 인한 제외지의 매핑에 부정확성을 포함하여 처리에 몇 가지 단점을 갖는 한계도 존재하지만 악천후의 기상 조건에서도 작동할 수 있는 SAR 영상의 능력 덕분에 규칙적인 시간 간격으로 수체면적의 변화에 대한 정보를 제공할 수 있다. 향후 북한 지역의 주요 댐 저수지 수면적에 대한 연간변화와 장기간의 추세를 분석하는 연구를 진행할 계획이다.
Journal of Satellite, Information and Communications
/
v.6
no.2
/
pp.1-9
/
2011
The Communication Ocean and Meteorological Satellite(COMS), the first geostationary observation satellite, was successfully launched on June 27th in 2010. The raw data of Meteorological Imager(MI) and Geostationary Ocean Color Imager(GOCI), the main payloads of COMS, is delivered to end-users through the on-ground processing. The COMS Image Data Acquisition and Control System(IDACS) developed by Korea Aerospace Research Institute(KARI) in domestic technologies performs radiometric and geometric corrections to raw data and disseminates pre-processed image data and additional data to end-users through the satellite. Currently the IDACS is in the nominal operations phase after successful in-orbit testing and operates in National Meteorological Satellite Center, Korea Ocean Satellite Center, and Satellite Operations Center, During the in-orbit test period, validations on functionalities and performance IDACS were divided into 1) image data acquisition and transmission, 2) preprocessing of MI and GOCI raw data, and 3) end-user dissemination. This paper presents that IDACS' operational validation results performed during the in-orbit test period after COMS' launch.
Deep learning shows differences in prediction performance depending on data quality and model. This study uses various input data and multiple deep learning models to build an optimal deep learning model for predicting solar radiation, which has the most influence on power generation prediction. did. As the input data, the weather data of the Korea Meteorological Administration and the clairvoyant meteorological image were used by segmenting the image of the Korea Meteorological Agency. , comparative evaluation, and predicting solar radiation by constructing multiple deep learning models connecting the models with the best error rate in each model. As an experimental result, the RMSE of model A, which is a multiple deep learning model, was 0.0637, the RMSE of model B was 0.07062, and the RMSE of model C was 0.06052, so the error rate of model A and model C was better than that of a single model. In this study, the model that connected two or more models through experiments showed improved prediction rates and stable learning results.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.37
no.6
/
pp.517-523
/
2019
PM10 concentration is a spatiotemporal phenomenta and capturing data for such continuous phenomena is a difficult task. This study designed a model that enhances spatiotemporal resolution of PM10 concentration levels using satellite imagery, atmospheric and meteorological sensor data, and multiple deep learning models. The designed deep learning model was trained using input data whose factors may affect concentration of PM10 such as meteorological conditions and land-use. Using this model, PM10 images having 15 minute temporal resolution and 30m×30m spatial resolution were produced with only atmospheric and meteorological data.
Yu, Jung-Hum;Lee, Mi Hee;Lee, Dal Geun;Kim, Jin-young;Park, Young-j
Proceedings of the Korean Society of Disaster Information Conference
/
2017.11a
/
pp.63-64
/
2017
광학 위성영상의 경우 기상조건의 영향을 많이 받기 때문에 연속적인 데이터 취득과 분석이 어렵다. 본 연구에서는 영상 획득률이 상대적으로 낮은 광학 위성영상의 단점을 보완하기 위해 SAR 위성영상과 광학 위성영상을 활용하여 다양한 자연재난에 대해 효율적인 재난관리의 가능성을 북한 황강댐 수표면적 분석사례를 통해 제시하였다. 위성영상 수집기간은 2016년 1월부터 2017년 7월까지 획득된 자료로 SAR 위성영상은 Sentinel-1을, 광학 위성영상은 Landsat-8을 획득하여 분석하였다. 이때 수증기, 구름 등 기상조건에 의해 Landsat-8을 획득하지 못한 부분은 Sentinel-1으로 대체하여 분석하였다. 그 결과, 2016년 5월 19일자 관측된 황강댐의 만수위 당시 수표면적과 2017년 7월 18일에 관측된 황강댐의 수표면적이 유사하여 방류위험성이 있어 상시 모니터링이 필요하다고 판단된다. 본 연구에서는 Sentinel-1와 Landsat-8을 활용하여 효율적인 재난관리를 보여주는 사례를 통하여 선제적인 재난관리에 활용성을 보여준다.
This is the study about the meteorological satellite cloud image classification by objective methods. For objective cloud classification, linear discriminant analysis was tried. In the linear discriminant analysis 27 cloud characteristic parameters were retrieved from GMS infrared image data. And, linear cloud classification model was developed from major parameters and cloud type coefficients. The model was applied to GMS IR image for weather forecasting operation and cloud image was classified into 5 types such as Sc, Cu, CiT, CiM and Cb. The classification results were reasonably compared with real image.
본 논문에서는 현재 개발 중인 통신해양기상위성(COMS : Communication, Ocean and Meteorological Satellite)의 데이터를 처리하는 영상 데이터 전처리 시스템 (IMPS, IMage Preprocessing Subsystem)의 설계 과정과 예비설계 결과를 설명한다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.1
/
pp.434-439
/
2019
Recently, interest in urban temperature change and ground surface temperature change has been increasing due to weather phenomenon due to global warming, heat island phenomenon caused by urbanization in urban areas. In Korea, weather data such as temperature and precipitation have been collected since 1904. In recent years, there are 96 ASOS stations and 494 AWS weather observation stations. However, in the case of terrestrial networks, terrestrial meteorological data except measurement points are predicted through interpolation because they provide point data for each installation point. In this study, to improve the resolution of ground surface temperature measurement, the surface temperature using satellite image was calculated and its applicability was analyzed. For this purpose, the satellite images of Landsat 8 OLI TIRS were obtained for Seoul Metropolitan City by seasons and transformed to surface temperature by applying NASA equation to the thermal bands. The ground measurement data was based on the temperature data measured by AWS. Since the AWS temperature data is station based point data, interpolation is performed by Kriging interpolation method for comparison with Landsat image. As a result of comparing the satellite image base surface temperature with the AWS temperature data, the temperature difference according to the season was calculated as fall, winter, summer, based on the RMSE value, Spring, in order of applicability of Landsat satellite image. The use of that attribute and AWS support starts at $2.11^{\circ}C$ and RMSE ${\pm}3.84^{\circ}C$, which reflects information from the extended NASA.
The purpose of this study is to find the relationship between GMS image data and hourly observed rainfalls data. Heavy rainfall cases over South Korea on 10th September 1990 and on 29th July 1993 were selected for studying of the relationship between the image data and reinfalls. First, image data were converted to TBB(Temperature of Black Body) and albedo and then these values were extracted for the pixels closest to the surface observation station to correlate with the rainfall data. Horizontal distribution of TBB and albedo tells roughly rainfall regions. The correlation between rainfall and TBB is found to be very low in quantitative analysis. The weak relationship between the brighter albedo and the higher rainfall probability is observed. This study suggests that the TBB values are useful in classifying rain areas and for heavy rainfalls the albedo values are more useful than the TBB. Low linear correlation between the fields may be attributed to the neglect of cloud types in this study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.