• Title/Summary/Keyword: 기상 영상

Search Result 608, Processing Time 0.025 seconds

Analysis of water surface change in reservoir using SAR Images (SAR영상을 이용한 저수지 수면적 변화 분석)

  • Joo Hun Kim;Hui Seong Noh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.444-444
    • /
    • 2023
  • 하천 및 저수지와 같은 공간의 수체 탐지는 수자원 관리에서 매우 중요하며, 유역의 수문학적 과정을 이해하는데 도움을 준다. 수문학적 데이터 수집은 우량계, 수위계와 같은 물리적 인프라의 배치가 필요하다. 그러나 상대적으로 저개발된 국가는 수문학적 측정을 위한 인프라가 매우 미흡한 것이 현실이며, 북한과 같은 비접근 지역에 대한 수문학적 과정을 분석하는데는 한계가 있다. 인공위성 원격탐사 센서 중 SAR영상은 지표면에 직접 전파를 방사하고 산란되어 돌아오는 신호를 수신하여 영상을 만들기 때문에 일반적인 광학영상과는 달리 햇빛의 유무와 강우, 구름여부 등의 기상 조건의 영향을 거의 받지 않는 장점이 있다. 또한 국내와 같이 계절적인 요인과 인간활동에 의해 변화되는 물 순환을 SAR 영상은 지표수의 계절적 및 연간 변동성을 모니터링하는데 매우 유용한 자료로 평가되고 있다. 본 연구는 SAR영상을 이용하여 국내의 검증 가능한 지역의 저수지 수면적 변화를 모니터링하고 저수지 수면적과 저수량 분석을 수행하는 것을 목적으로 하였다. 분석자료인 SAR영상은 ESA의 Sentinel-1영상을 2022년 4월부터 2022년 11월의 자료를 수집하여 소양강댐 저수지 수면적과 저수량과의 관계식을 도출하였다. 수체 추출을 위한 SAR 영상은 특히 수로의 일부 가장자리와 홍수터의 식물 존재로 인한 제외지의 매핑에 부정확성을 포함하여 처리에 몇 가지 단점을 갖는 한계도 존재하지만 악천후의 기상 조건에서도 작동할 수 있는 SAR 영상의 능력 덕분에 규칙적인 시간 간격으로 수체면적의 변화에 대한 정보를 제공할 수 있다. 향후 북한 지역의 주요 댐 저수지 수면적에 대한 연간변화와 장기간의 추세를 분석하는 연구를 진행할 계획이다.

  • PDF

In-Orbit Test Operational Validation of the COMS Image Data Acquisition and Control System (천리안 송수신자료전처리시스템의 궤도상 시험 운영 검증)

  • Lim, Hyun-Su;Ahn, Sang-Il;Seo, Seok-Bae;Park, Durk-Jong
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • The Communication Ocean and Meteorological Satellite(COMS), the first geostationary observation satellite, was successfully launched on June 27th in 2010. The raw data of Meteorological Imager(MI) and Geostationary Ocean Color Imager(GOCI), the main payloads of COMS, is delivered to end-users through the on-ground processing. The COMS Image Data Acquisition and Control System(IDACS) developed by Korea Aerospace Research Institute(KARI) in domestic technologies performs radiometric and geometric corrections to raw data and disseminates pre-processed image data and additional data to end-users through the satellite. Currently the IDACS is in the nominal operations phase after successful in-orbit testing and operates in National Meteorological Satellite Center, Korea Ocean Satellite Center, and Satellite Operations Center, During the in-orbit test period, validations on functionalities and performance IDACS were divided into 1) image data acquisition and transmission, 2) preprocessing of MI and GOCI raw data, and 3) end-user dissemination. This paper presents that IDACS' operational validation results performed during the in-orbit test period after COMS' launch.

Radiation Prediction Based on Multi Deep Learning Model Using Weather Data and Weather Satellites Image (기상 데이터와 기상 위성 영상을 이용한 다중 딥러닝 모델 기반 일사량 예측)

  • Jae-Jung Kim;Yong-Hun You;Chang-Bok Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.569-575
    • /
    • 2021
  • Deep learning shows differences in prediction performance depending on data quality and model. This study uses various input data and multiple deep learning models to build an optimal deep learning model for predicting solar radiation, which has the most influence on power generation prediction. did. As the input data, the weather data of the Korea Meteorological Administration and the clairvoyant meteorological image were used by segmenting the image of the Korea Meteorological Agency. , comparative evaluation, and predicting solar radiation by constructing multiple deep learning models connecting the models with the best error rate in each model. As an experimental result, the RMSE of model A, which is a multiple deep learning model, was 0.0637, the RMSE of model B was 0.07062, and the RMSE of model C was 0.06052, so the error rate of model A and model C was better than that of a single model. In this study, the model that connected two or more models through experiments showed improved prediction rates and stable learning results.

Spatiotemporal Resolution Enhancement of PM10 Concentration Data Using Satellite Image and Sensor Data in Deep Learning (위성 영상과 관측 센서 데이터를 이용한 PM10농도 데이터의 시공간 해상도 향상 딥러닝 모델 설계)

  • Baek, Chang-Sun;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.517-523
    • /
    • 2019
  • PM10 concentration is a spatiotemporal phenomenta and capturing data for such continuous phenomena is a difficult task. This study designed a model that enhances spatiotemporal resolution of PM10 concentration levels using satellite imagery, atmospheric and meteorological sensor data, and multiple deep learning models. The designed deep learning model was trained using input data whose factors may affect concentration of PM10 such as meteorological conditions and land-use. Using this model, PM10 images having 15 minute temporal resolution and 30m×30m spatial resolution were produced with only atmospheric and meteorological data.

A Case Study on Water Area Monitoring Using Sentinel-1 and Landsat-8 (Sentinel-1과 Landsat-8 영상을 활용한 수표면적 분석사례)

  • Yu, Jung-Hum;Lee, Mi Hee;Lee, Dal Geun;Kim, Jin-young;Park, Young-j
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.63-64
    • /
    • 2017
  • 광학 위성영상의 경우 기상조건의 영향을 많이 받기 때문에 연속적인 데이터 취득과 분석이 어렵다. 본 연구에서는 영상 획득률이 상대적으로 낮은 광학 위성영상의 단점을 보완하기 위해 SAR 위성영상과 광학 위성영상을 활용하여 다양한 자연재난에 대해 효율적인 재난관리의 가능성을 북한 황강댐 수표면적 분석사례를 통해 제시하였다. 위성영상 수집기간은 2016년 1월부터 2017년 7월까지 획득된 자료로 SAR 위성영상은 Sentinel-1을, 광학 위성영상은 Landsat-8을 획득하여 분석하였다. 이때 수증기, 구름 등 기상조건에 의해 Landsat-8을 획득하지 못한 부분은 Sentinel-1으로 대체하여 분석하였다. 그 결과, 2016년 5월 19일자 관측된 황강댐의 만수위 당시 수표면적과 2017년 7월 18일에 관측된 황강댐의 수표면적이 유사하여 방류위험성이 있어 상시 모니터링이 필요하다고 판단된다. 본 연구에서는 Sentinel-1와 Landsat-8을 활용하여 효율적인 재난관리를 보여주는 사례를 통하여 선제적인 재난관리에 활용성을 보여준다.

  • PDF

Objective Cloud Type Classification of Meteorological Satellite Data Using Linear Discriminant Analysis (선형판별법에 의한 GMS 영상의 객관적 운형분류)

  • 서애숙;김금란
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.1
    • /
    • pp.11-24
    • /
    • 1990
  • This is the study about the meteorological satellite cloud image classification by objective methods. For objective cloud classification, linear discriminant analysis was tried. In the linear discriminant analysis 27 cloud characteristic parameters were retrieved from GMS infrared image data. And, linear cloud classification model was developed from major parameters and cloud type coefficients. The model was applied to GMS IR image for weather forecasting operation and cloud image was classified into 5 types such as Sc, Cu, CiT, CiM and Cb. The classification results were reasonably compared with real image.

A Design of Image Preprocessing Subsystem for COMS (통신해양기상위성 영상 데이터 전처리 시스템 설계)

  • Seo Seok-Bae;Koo In-Hoi;Ahn Sang-Il;Kim Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.390-393
    • /
    • 2006
  • 본 논문에서는 현재 개발 중인 통신해양기상위성(COMS : Communication, Ocean and Meteorological Satellite)의 데이터를 처리하는 영상 데이터 전처리 시스템 (IMPS, IMage Preprocessing Subsystem)의 설계 과정과 예비설계 결과를 설명한다.

  • PDF

Distribution Analysis of Land Surface Temperature about Seoul Using Landsat 8 Satellite Images and AWS Data (Landsat 8 위성영상과 AWS 데이터를 이용한 서울특별시의 지표면 온도 분포 분석)

  • Lee, Jong-Sin;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.434-439
    • /
    • 2019
  • Recently, interest in urban temperature change and ground surface temperature change has been increasing due to weather phenomenon due to global warming, heat island phenomenon caused by urbanization in urban areas. In Korea, weather data such as temperature and precipitation have been collected since 1904. In recent years, there are 96 ASOS stations and 494 AWS weather observation stations. However, in the case of terrestrial networks, terrestrial meteorological data except measurement points are predicted through interpolation because they provide point data for each installation point. In this study, to improve the resolution of ground surface temperature measurement, the surface temperature using satellite image was calculated and its applicability was analyzed. For this purpose, the satellite images of Landsat 8 OLI TIRS were obtained for Seoul Metropolitan City by seasons and transformed to surface temperature by applying NASA equation to the thermal bands. The ground measurement data was based on the temperature data measured by AWS. Since the AWS temperature data is station based point data, interpolation is performed by Kriging interpolation method for comparison with Landsat image. As a result of comparing the satellite image base surface temperature with the AWS temperature data, the temperature difference according to the season was calculated as fall, winter, summer, based on the RMSE value, Spring, in order of applicability of Landsat satellite image. The use of that attribute and AWS support starts at $2.11^{\circ}C$ and RMSE ${\pm}3.84^{\circ}C$, which reflects information from the extended NASA.

An intercomparison of GMS image data and observed rainfall data (GMS 영상자료와 관측강수량 자료의 비교)

  • 서애숙;이미선;김금란;이희훈
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 1994
  • The purpose of this study is to find the relationship between GMS image data and hourly observed rainfalls data. Heavy rainfall cases over South Korea on 10th September 1990 and on 29th July 1993 were selected for studying of the relationship between the image data and reinfalls. First, image data were converted to TBB(Temperature of Black Body) and albedo and then these values were extracted for the pixels closest to the surface observation station to correlate with the rainfall data. Horizontal distribution of TBB and albedo tells roughly rainfall regions. The correlation between rainfall and TBB is found to be very low in quantitative analysis. The weak relationship between the brighter albedo and the higher rainfall probability is observed. This study suggests that the TBB values are useful in classifying rain areas and for heavy rainfalls the albedo values are more useful than the TBB. Low linear correlation between the fields may be attributed to the neglect of cloud types in this study.