• Title/Summary/Keyword: 기상청 ASOS

Search Result 66, Processing Time 0.021 seconds

Analysis and Prediction of Bicycle Traffic Accidents in Korea (자전거 교통 사고 현황 및 예측 분석)

  • Choi, Seunghee;Lee, Goo Yeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.89-96
    • /
    • 2016
  • According to the promoting policy for bicycle riding, the bicycle road infrastructure in Korea has been widely established. As the number of bicycle rider increases, bicycle traffic accidents also increase year after year. In this paper, we analyze bicycle traffic accident data from 2007 to 2014 which is provided by Road Traffic Authority and present statistical results of bicycle traffic accidents. And also regression analysis is applied to predict the number of daily traffic accidents in Seoul using ASOS(Automated Synoptic Observing System) climate data observed in the Seoul sector which are provided by Korea Meteorological Administration. In addition, decision tree analysis techniques are used to forecast the level of traffic accidents severity. In the analytic results of this research, we expect that it will be helpful to establish the collective policy of bicycle accident data and protective strategy in order to reduce the number of bicycle accidents.

Evaluation of the Applicability of the Poisson Cluster Rainfall Generation Model for Modeling Extreme Hydrological Events (극한수문사상의 모의를 위한 포아송 클러스터 강우생성모형의 적용성 평가)

  • Kim, Dong-Kyun;Kwon, Hyun-Han;Hwang, Seok Hwan;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.773-784
    • /
    • 2014
  • This study evaluated the applicability of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) rainfall generation model for modeling extreme rainfalls and floods in Korean Peninsula. Firstly, using the ISPSO (Isolated Species Particle Swarm Optimization) method, the parameters of the MBLRP model were estimated at the 61 ASOS (Automatic Surface Observation System) rain gauges located across Korean Peninsula. Then, the synthetic rainfall time series with the length of 100 years were generated using the MBLRP model for each of the rain gauges. Finally, design rainfalls and design floods with various recurrence intervals were estimated based on the generated synthetic rainfall time series, which were compared to the values based on the observed rainfall time series. The results of the comparison indicate that the design rainfalls based on the synthetic rainfall time series were smaller than the ones based on the observation by 20% to 42%. The amount of underestimation increased with the increase of return period. In case of the design floods, the degree of underestimation was 31% to 50%, which increases along with the return period of flood and the curve number of basin.

Development of Real-Time Drought Outlook System in Chungcheongnam-do (충청남도 실시간 가뭄 전망 시스템 개발)

  • Gwon, Yong Hyeon;Kang, Tae Hoon;Jung, Ui Seok;Lee, Byong Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.406-406
    • /
    • 2019
  • 최근 전세계적으로 기후변화로 인해 가뭄의 발생 가능성이 높아지고 있으며 그에 대한 인적피해와 경제적 손실로 인한 피해액은 증가하는 추세이다. 특히, 국내의 충남지역은 최근 강수량이 평년대비 75% 수준으로 감소하고 있으며, 지속적인 가뭄이 발생하여 용수 확보에 어려움을 겪고 있다. 또한, 2015년에는 강수량 감소로 인해 보령댐을 상수원으로 사용하고 있는 충남 서북부지역 8개 시군에 용수 공급에 큰 차질이 있었다. 지속적인 가뭄상황이 반복되면서 정부 지자체 공공기관 등에서는 가뭄의 규모 및 단계에 따른 공간적 범위를 표출하는 가뭄 모니터링과 가뭄 전망 시스템을 구축하여 운영하고 있다. 다만 하천과 저수지를 연계하여 지역적 특성을 고려한 중규모 지역에 대한 가뭄전망 시스템은 부족한 실정이다. 이를 해결하고자 하천과 저수지에 대한 실시간 유출 및 물수지 분석기술을 이용하여 미래 무강수 조건에서 일단위 공급가능량, 공급량, 부족량, 잉여공급량, 가뭄위험등급을 전망하는 DOS(Drought Outlook System)을 개발하였다. 본 시스템은 지속적인 가뭄이 발생하고 있는 충남 서북부지역 8개 시군에 대한 436개의 하천유역을 구성하고 129개의 저수지를 대상으로 구축하였다. 기상자료는 기상청 ASOS 일 관측자료를 실시간으로 수집하여 티센법 기반의 436개 유역평균 일단위 강우량과 잠재증발산량을 산정하고 미래 90일에 대해서는 무강우와 평균 잠재증발산량을 적용하였다. TANK 모델과 물수지분석을 통해 과거 400일과 미래 90일에 대한 일단위 하천유량, 저수량, 부족량, 가뭄위험등급 등을 산정하여 매일 14시에 GIS기반 웹시스템에 표출된다. 본 시스템을 통해 하천유역 및 저수지에 대한 미래의 물공급 변화 및 가뭄위험 변화를 판단하고 추정할 수 있으며 추후 타지역 확장을 통해 전국에 대한 가뭄위험을 전망하고 가뭄대책수립에 기여 할 수 있을 것으로 판단된다.

  • PDF

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.

Possibility of Estimating Daily Mean Temperature for Improving the Accuracy of Temperature in Forage Yield Prediction Model (풀사료 수량예측모델의 온도 정밀도 향상을 위한 일평균온도 추정 가능성 검토)

  • Kang, Shin Gon;Jo, Hyun Wook;Kim, Ji Yung;Kim, Kyeong Dae;Lee, Bae Hun;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.56-61
    • /
    • 2021
  • This study was conducted to determine the possibility of estimating the daily mean temperature for a specific location based on the climatic data collected from the nearby Automated Synoptic Observing System (ASOS) and Automated Weather System(AWS) to improve the accuracy of the climate data in forage yield prediction model. To perform this study, the annual mean temperature and monthly mean temperature were checked for normality, correlation with location information (Longitude, Latitude, and Altitude) and multiple regression analysis, respectively. The altitude was found to have a continuous effect on the annual mean temperature and the monthly mean temperature, while the latitude was found to have an effect on the monthly mean temperature excluding June. Longitude affected monthly mean temperature in June, July, August, September, October, and November. Based on the above results and years of experience with climate-related research, the daily mean temperature estimation was determined to be possible using longitude, latitude, and altitude. In this study, it is possible to estimate the daily mean temperature using climate data from all over the country, but in order to improve the accuracy of daily mean temperature, climatic data needs to applied to each city and province.

A Comparative Evaluation of Multiple Meteorological Datasets for the Rice Yield Prediction at the County Level in South Korea (우리나라 시군단위 벼 수확량 예측을 위한 다종 기상자료의 비교평가)

  • Cho, Subin;Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Kim, Gunah;Kang, Jonggu;Kim, Kwangjin;Cho, Jaeil;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.337-357
    • /
    • 2021
  • Because the growth of paddy rice is affected by meteorological factors, the selection of appropriate meteorological variables is essential to build a rice yield prediction model. This paper examines the suitability of multiple meteorological datasets for the rice yield modeling in South Korea, 1996-2019, and a hindcast experiment for rice yield using a machine learning method by considering the nonlinear relationships between meteorological variables and the rice yield. In addition to the ASOS in-situ observations, we used CRU-JRA ver. 2.1 and ERA5 reanalysis. From the multiple meteorological datasets, we extracted the four common variables (air temperature, relative humidity, solar radiation, and precipitation) and analyzed the characteristics of each data and the associations with rice yields. CRU-JRA ver. 2.1 showed an overall agreement with the other datasets. While relative humidity had a rare relationship with rice yields, solar radiation showed a somewhat high correlation with rice yields. Using the air temperature, solar radiation, and precipitation of July, August, and September, we built a random forest model for the hindcast experiments of rice yields. The model with CRU-JRA ver. 2.1 showed the best performance with a correlation coefficient of 0.772. The solar radiation in the prediction model had the most significant importance among the variables, which is in accordance with the generic agricultural knowledge. This paper has an implication for selecting from multiple meteorological datasets for rice yield modeling.

Production and Spatiotemporal Analysis of High-Resolution Temperature-Humidity Index and Heat Stress Days Distribution (고해상도 온습도지수 및 고온 스트레스 일수 분포도의 제작과 이를 활용한 시공간적 변화 분석)

  • Dae Gyoon Kang;Dae-Jun Kim;Jin-Hee Kim;Eun-Jeong Yun;Eun-Hye Ban;Yong Seok Kim;Sera Jo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.446-454
    • /
    • 2023
  • The impact of climate change on agriculture is substantial, especially as global warming is projected to lead to varying temperature and humidity patterns in the future. These changes pose a higher risk for both crops and livestock, exposing them to environmental stressors under altered climatic conditions. Specifically, as temperatures are expected to rise, the risk of heat stress is assessable through the Temperature-Humidity Index (THI), derived from temperature and relative humidity data. This study involved the comparison of THI collected from 10 Korea Meteorological Administration ASOS stations spanning a 60-year period from 1961 to 2020. Moreover, high-resolution temperature and humidity distribution data from 1981 to 2020 were employed to generate high-resolution TH I distributions, analyzing temporal changes. Additionally, the number of days characterized by heat stress, derived from TH I, was compared over different time periods. Generally, TH I showed an upward trend over the past, albeit with varying rates across different locations. As TH I increased, the frequency of heat stress days also rose, indicating potential future cost increases in the livestock industry due to heat-related challenges. The findings emphasize the feasibility of evaluating heat stress risk in livestock using THI and underscore the need for research analyzing THI under future climate change scenarios.

Assessment of CMIP5 GCMs for future extreme drought analysis (미래 극한 가뭄 전망을 위한 CMIP5 GCMs 평가)

  • Hong, Hyun-Pyo;Park, Seo-Yeon;Kim, Tae-Woong;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.617-627
    • /
    • 2018
  • In this study, CMIP5 GCMs rainfall data (2011~2099) based on RCP scenarios were used to analyze the extreme drought evaluation for the future period. For prospective drought assessment, historical observations were used based on the Automated Surface Observing System (ASOS) data (1976~2010) of the Korea Meteorological Administration. Through the analysis of various indicators, such as average annual rainfall, rainy days, drought spell, and average drought severity was carried out for the drought evaluation of the five major river basins (Han river, Nakdong river, Geum river, Sumjin river, and Youngsan river) over the Korean peninsula. The GCMs that predicted the most severe future droughts are CMCC-CMS, IPSL-CM5A-LR and IPSL-CM5A-MR. Moderate future droughts were predicted from HadGEM2-CC, CMCC-CM and HadGEM2-ES. GCMs with relatively weak future drought forecasts were selected as CESM1-CAM5, MIROC-ESM-CHEM and CanESM2. The results of this study might be used as a fundamental data to choose a reasonable climate change scenario in future extreme drought evaluation.

Future climate change of Jeju Island according to SSP scenarios (SSP 시나리오에 따른 제주도 지역의 미래 기후변화 전망)

  • Kim, Chul-Gyum;Cho, Jaepil;Chung, Il-Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.414-414
    • /
    • 2022
  • 본 연구는 2022년도 "제주특별자치도 수자원 부존현황 조사 및 분석 사업"의 연구비 지원에 의해수행되었습니다.최근 IPCC 제6차 평가보고서(AR6)에 새롭게 적용된 미래 기후변화 시나리오인 SSP (Shared Socioeconomic Pathways)에 따른 제주도 지역의 미래 기후변화를 강수량, 기온, 기준증발산 등을 중심으로 분석하였다. 미래의 기후변화 자료로서 19개의 GCM 모형으로부터 도출된 4개의 SSP 시나리오(SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5)를 활용하였다. 제주도 지역의 3개 기상청 ASOS 지점(제주, 성산, 서귀포)을 대상으로 상세화된 기후변화 자료를 이용하여 지점별 및 지역별 미래 전망을 분석하였다. 기준증발산량은 기온자료만을 이용하는 Thornthwaite 방법을 활용하여 산정하였으며, FAO-56 Penman-Monteith 기준증발산량과의 차이를 최소화하기 위하여 시공간적 보정계수를 적용하였다. 과거기간(1985~2014년)을 기준으로, 미래기간(2021~2095년)을 3개 구간(2021~2045년, 2046~2070년, 2071~2095년)으로 나누어 분석하였다. 제주도 전체에 대한 평균적인 전망은 대부분의 SSP 시나리오에서 강수량, 기온, 기준증발산량 모두 미래 후반기로 갈수록 점차 증가하는 경향을 보였으며, SSP1-2.6 시나리오에서만 기온과 기준증발산량이 미래 전반기(2021~2045년)에는 크게 증가하다가 중반기(2046~2070년)와 후반기(2071~2095년)에는 비교적 일정한 것으로 전망되었다. 과거기간과 비교하여 미래 후반기 SSP5-8.5 시나리오에서 가장 크게 증가하는 것으로 전망되었으며, 강수량은 17%, 기온은 38%, 기준증발산량은 58%까지 증가하는 것으로 분석되었다. 지점별로는 제주 지점이 다른 2개 지점(성산, 서귀포)에서보다 더 많이 증가할 것으로 전망되었다. 제주 지점의 경우 SSP5-8.5 시나리오에서 연 강수량은 19%, 평균기온은 42%, 기준증발산량은 70%까지 증가하는 것으로 나타났다. 증가되는 크기는 강수량은 서귀포, 성산, 제주 지점 순으로 전망되었으며, 기온과 기준증발산량은 반대로 제주, 성산, 서귀포 순으로 증가량이 클 것으로 전망되었다. 그러나 GCM 모형에 따라 전망결과가 다양하게 나타나기 때문에 이에 대한 불확실성을 고려한 미래 대응이 필요하다.

  • PDF

Evaluation of bias and uncertainty in snow depth reanalysis data over South Korea (한반도 적설심 재분석자료의 오차 및 불확실성 평가)

  • Jeon, Hyunho;Lee, Seulchan;Lee, Yangwon;Kim, Jinsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.543-551
    • /
    • 2023
  • Snow is an essential climate factor that affects the climate system and surface energy balance, and it also has a crucial role in water balance by providing solid water stored during the winter for spring runoff and groundwater recharge. In this study, statistical analysis of Local Data Assimilation and Prediction System (LDAPS), Modern.-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and ERA5-Land snow depth data were used to evaluate the applicability in South Korea. The statistical analysis between the Automated Synoptic Observing System (ASOS) ground observation data provided by the Korea Meteorological Administration (KMA) and the reanalysis data showed that LDAPS and ERA5-Land were highly correlated with a correlation coefficient of more than 0.69, but LDAPS showed a large error with an RMSE of 0.79 m. In the case of MERRA-2, the correlation coefficient was lower at 0.17 because the constant value was estimated continuously for some periods, which did not adequately simulate the increase and decrease trend between data. The statistical analysis of LDAPS and ASOS showed high and low performance in the nearby Gangwon Province, where the average snowfall is relatively high, and in the southern region, where the average snowfall is low, respectively. Finally, the error variance between the four independent snow depth data used in this study was calculated through triple collocation (TC), and a merged snow depth data was produced through weighting factors. The reanalyzed data showed the highest error variance in the order of LDAPS, MERRA-2, and ERA5-Land, and LDAPS was given a lower weighting factor due to its higher error variance. In addition, the spatial distribution of ERA5-Land snow depth data showed less variability, so the TC-merged snow depth data showed a similar spatial distribution to MERRA-2, which has a low spatial resolution. Considering the correlation, error, and uncertainty of the data, the ERA5-Land data is suitable for snow-related analysis in South Korea. In addition, it is expected that LDAPS data, which is highly correlated with other data but tends to be overestimated, can be actively utilized for high-resolution representation of regional and climatic diversity if appropriate corrections are performed.