• Title/Summary/Keyword: 기상예측

Search Result 2,137, Processing Time 0.037 seconds

Application and assessment of Dynamic Water resources Assessment Tool (DWAT) to predict ensemble streamflow (앙상블 하천유량 예측을 위한 동적수자원평가시스템의 적용 및 평가)

  • Jeonghyeon Choi;Deokhwan Kim;Cheolhee Jang;Hyeonjun Kim;Hyeongseob Shin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.346-346
    • /
    • 2023
  • 한국은 기상·수문정보의 예측이 기상 및 기후 측면에서 주도적으로 이루어지고 있다. 그러나 단기 및 중기 수자원 평가 및 분석을 위해 필요한 시공간적 규모, 정확도, 평가체계를 고려한 기상 기후 예측정보의 활용 방안이 마련될 필요가 있다. 이에 본 연구에서는 미래 수자원 평가 및 분석을 위한 방안을 마련하고자 국내 경안천 유역을 대상으로 하천유량을 예측하고 평가하였다. 이를 위해, 우리는 세계기상기구(World Meteorological Organization, WMO)에서 회원국을 대상으로 배포 중인 수자원 평가 도구인 동적수자원평가시스템(Dynamic Water resources Assessment Tool, DWAT)을 경안천 유역에 대하여 구축하고, 과거 관측 기상 및 유량 자료를 이용하여 매개변수를 보정하였다. 앙상블 하천유량 예측을 위해서 전지구적인 기후 패턴과 국내 기상 특성 간의 상관성 분석 후 이를 예측인자로 활용하여 다중회귀모형과 인공신경망 모형으로부터 생성된 1,000개의 앙상블 강우 및 기온 예측정보를 DWAT의 입력자료로 이용하였다. 2022년에 대한 앙상블예측정보를 DWAT의 입력자료로 사용하여 앙상블 하천유량이 예측되었다. 예측된 일-단위 하천유량은 실제 관측유량과 차이를 보이나 이는 예측된 앙상블 강우 및 기온정보의 오차에 기인하는 것으로 보인다. 이러한 결과는 수문 모형 결과의 오차는 강제 자료의 오차에 큰 영향을 받는 한계를 다시 한번 확인시켜준다. 따라서 단기·중기 수자원 평가 및 분석을 월-단위 하천유량으로 변환하여 월별 통계치를 분석하는 방향을 고려할 필요가 있다.

  • PDF

Evaluation of Applicability of Monthly Runoff Forecasting Techniques for Water Supply Outlook (유역의 물공급 전망을 위한 월단위 유출예측기법에 대한 적용성 평가)

  • Jeong, Woo-Chang;Hwang, Man-Ha;Chong, Koo-Yol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1160-1164
    • /
    • 2008
  • 본 연구에서는 유역유출예측시스템인 RRFS(Rainfall Runoff Forecasting System)를 이용하여 금강유역에 대해 기법별 월단위 유출예측을 수행하였다. 적용된 유출예측기간은 '07년 1월부터 12월까지이며 월단위로 유출예측이 수행되었으며, 유출예측 검증을 위한 주요지점으로는 금강유역 내에 있는 용담댐 지점, 대청댐 지점 그리고 공주지점이다. 본 연구에 적용된 유출예측기법으로는 1) 과거 관측 월유출량 자료를 이용한 유출량 예측 기법, 2) ESP 기법을 통한 유출량 예측 기법, 3) 기상전망을 고려한 ESP 유출량 예측 기법, 4) 기상수치예보 자료를 이용한 유출량 예측 기법이다. ESP 기법에서는 통계분석을 통해 얻어진 월별 ESP 확률분포를 이용하여 '02년부터 '07년까지 과거 실측 월별 유출량에 대한 ESP 확률범위를 결정하였으며, 이를 이수기(1월$\sim$6월 그리고 10월$\sim$12월)와 홍수기(7월$\sim$9월)로 분리한 후 각각에 대한 ESP 확률값을 최종적으로 결정하여 유출예측에 적용하였다. 또한 기상전망을 고려한 ESP 기법에서는 기상청에서 제공하는 강수전망(N:평년, A:많음, B:적음)에 대한 정보를 고려하여 ESP 확률을 결정하여 유출예측을 수행하였다. 그림 1과 2는 예로서 4월과 10월에 대해 예측기법에 따른 주요지점별 유출예측결과를 비교한 것이며, 기법별 유출예측결과에 대한 비교분석결과 전반적으로 기상전망을 고려한 ESP 유출량 예측기법이 가장 우수한 것으로 나타났다.

  • PDF

Seasonal rainfall short-term forecasting model considering climate indices (외부기상인자를 고려한 낙동강유역 계절강수량 단기예측모형)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Hwang, Kyu-Nam;Chun, Si-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.401-401
    • /
    • 2011
  • 본 연구는 Bayesian MCMC(Markov Chain Monte Carlo)를 이용한 비정상성 빈도해석 모형에 외부기상인자를 결합하여 계절단위의 강수량을 예측하는데 목적을 두고 있으며, 그 중에서도 홍수 위험도와 관련하여 유용하게 이용될 수 있는 여름강수량을 예측 대상으로 하였다. 비정상성 빈도해석 모형을 기반으로 외부 기상인자에 의한 변동성을 고려하기 위해서는 대상 수문량을 한정할 필요가 있으며 극대치강수량과 연관성이 높은 장마전선, 태풍 등의 기상인자는 공간적 변동성 및 복합적인 특성들로 인해 예측인자를 구성하는 기상인자로 사용하기에는 무리가 있다. 따라서 본 연구에서는 계절단위의 수문량으로 여름강수량을 대상으로 하였으며, 이에 영향을 미치는 외부 기상인자로서 SST(sea surface temperature)와 OLR(outgoing longwave radiation)을 도입하였으며, 낙동강유역 여름강수량과의 공간 상관성이 높은 지역의 이전 겨울 SST와 6월 OLR을 예측인자로 활용한 7~9월 여름강수량 예측모형을 구성하였다. 모형의 검증은 결과를 알고 있는 2010년 여름 강수량을 대상으로 수행하였으며, 모형의 적용은 현재시점에서 관측된 2010년 겨울 SST와, 과거 관측 자료를 토대로 가정된 2011년 6월 OLR을 이용하여 2011년 여름 강수량을 예측하였다. 결과적으로 모형 매개변수들의 사후분포로부터 불확실성 구간을 포함한 예측결과를 구할 수 있었다.

  • PDF

Generation and Combination of Rainfall Ensemble using Artificial Neural Network Model (인공신경망 모형을 활용한 강우 앙상블 생성 및 조합)

  • Kim, Taereem;Shin, Ju-Young;Joo, Kyungwon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.497-497
    • /
    • 2018
  • 복잡한 기상조건 하에서 강우의 예측은 수문 기상 분야에서 필수적인 과정이라 할 수 있다. 특히 월 단위의 강우 예측은 장기적인 수자원 관리 및 계획 수립 시 매우 중요한 기준이 되기 때문에 보다 정확하고 신뢰도 있는 예측을 필요로 하고 있다. 이를 위해 전 지구적 기후 변동의 양상을 수치화 하여 나타낼 수 있는 기상인자의 활용이 활발해지고 있으며 다양한 모형을 기반으로 한 강우 예측이 수행되고 있다. 최근에는 인공지능 기법을 활용한 인공신경망 모형의 적용이 활발해짐에 따라 높은 예측력을 바탕으로 강우 예측에 대한 연구가 이루어지고 있지만 초기 가중치의 무작위성 또는 과적합으로 인한 문제도 함께 나타나고 있다. 본 연구에서는 인공신경망 모형의 활용성을 높이고 신뢰성을 확보하기 위한 강우 예측을 수행하고자 하였다. 이를 위해 다양한 기상인자를 활용하여 인공신경망 모형을 위한 정보를 구축하고 인공신경망 모형을 통해 생성되는 결과로부터 단일 예측이 아닌 앙상블 예측을 활용함으로써 강우 앙상블을 생성하고 조합하였다. 그 결과 인공신경망 모형을 통한 단일 예측보다 앙상블을 통한 예측으로 안정적이고 정확한 예측 결과를 산정할 수 있었으며 기존에 인공신경망 모형을 통한 예측의 문제점을 보완할 수 있었다.

  • PDF

Short Term Forecast Model for Solar Power Generation using RNN-LSTM (RNN-LSTM을 이용한 태양광 발전량 단기 예측 모델)

  • Shin, Dong-Ha;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.233-239
    • /
    • 2018
  • Since solar power generation is intermittent depending on weather conditions, it is necessary to predict the accurate generation amount of solar power to improve the efficiency and economical efficiency of solar power generation. This study proposes a short - term deep learning prediction model of solar power generation using meteorological data from Mokpo meteorological agency and generation data of Yeongam solar power plant. The meteorological agency forecasts weather factors such as temperature, precipitation, wind direction, wind speed, humidity, and cloudiness for three days. However, sunshine and solar radiation, the most important meteorological factors for forecasting solar power generation, are not predicted. The proposed model predicts solar radiation and solar radiation using forecast meteorological factors. The power generation was also forecasted by adding the forecasted solar and solar factors to the meteorological factors. The forecasted power generation of the proposed model is that the average RMSE and MAE of DNN are 0.177 and 0.095, and RNN is 0.116 and 0.067. Also, LSTM is the best result of 0.100 and 0.054. It is expected that this study will lead to better prediction results by combining various input.

Prediction of Road Traffic Noise By NMPB 2008 Considering Meteorological Effect (NMPB 2008의 기상학적 요소를 고려한 도로교통소음 예측)

  • Kim, Phillip;Ahn, So-yeon;Ryu, Hunjae;Park, Taeho;Chang, Seo Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.943-947
    • /
    • 2014
  • NMPB 2008을 포함한 일부 소음 예측식에서는 기상학적 요소를 고려할 수 있다. 특히 NMPB 2008을 이용하여 소음을 예측할 경우에는 기상학적인 요소의 고려는 필수적이다. 하지만, 우리나라의 실제 기상 상황을 반영할 수 있는 방법이 없는 것이 현실이다. 본 연구에서는 기상학적 요소를 적용하기 위해서 하향 굴절 발생 빈도를 적용하여 소음도를 비교하였다. 기상학적 요소의 하향 굴절 발생 빈도의 증가에 따라 소음도가 증가하는 것을 확인하였고, 1kHz 이상의 주파수에서 거리에 따른 소음도의 차이에 상대적으로 큰 영향을 미치는 것을 확인하였다. 기상학적 요소의 적용은 예측 소음도의 정확도를 향상시킬 것으로 기대된다.

  • PDF

Study on Soil Moisture Predictability using Machine Learning Technique (머신러닝 기법을 활용한 토양수분 예측 가능성 연구)

  • Jo, Bongjun;Choi, Wanmin;Kim, Youngdae;kim, Kisung;Kim, Jonggun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.248-248
    • /
    • 2020
  • 토양수분은 증발산, 유출, 침투 등 물수지 요소들과 밀접한 연관이 있는 주요한 변수 중에 하나이다. 토양수분의 정도는 토양의 특성, 토지이용 형태, 기상 상태 등에 따라 공간적으로 상이하며, 특히 기상 상태에 따라 시간적 변동성을 보이고 있다. 기존 토양수분 측정은 토양시료 채취를 통한 실내 실험 측정과 측정 장비를 통한 현장 조사 방법이 있으나 시간적, 경제적 한계점이 있으며, 원격탐사 기법은 공간적으로 넓은 범위를 포함하지만 시간 해상도가 낮은 단점이 있다. 또한, 모델링을 통한 토양수분 예측 기술은 전문적인 지식이 요구되며, 복잡한 입력자료의 구축이 요구된다. 최근 머신러닝 기법은 수많은 자료 학습을 통해 사용자가 원하는 출력값을 도출하는데 널리 활용되고 있다. 이에 본 연구에서는 토양수분과 연관된 다양한 기상 인자들(강수량, 풍속, 습도 등)을 활용하여 머신러닝기법의 반복학습을 통한 토양수분의 예측 가능성을 분석하고자 한다. 이를 위해 시공간적으로 토양수분 실측 자료가 잘 구축되어 있는 청미천과 설마천 유역을 대상으로 머신러닝 기법을 적용하였다. 두 대상지에서 2008년~2012년 수문자료를 확보하였으며, 기상자료는 기상자료개방포털과 WAMIS를 통해 자료를 확보하였다. 토양수분 자료와 기상자료를 머신러닝 알고리즘을 통해 학습하고 2012년 기상 자료를 바탕으로 토양수분을 예측하였다. 사용되는 머신러닝 기법은 의사결정 나무(Decision Tree), 신경망(Multi Layer Perceptron, MLP), K-최근접 이웃(K-Nearest Neighbors, KNN), 서포트 벡터 머신(Support Vector Machine, SVM), 랜덤 포레스트(Random Forest), 그래디언트 부스팅 (Gradient Boosting)이다. 토양수분과 기상인자 간의 상관관계를 분석하기 위해 히트맵(Heat Map)을 이용하였다. 히트맵 분석 결과 토양수분의 시간적 변동은 다양한 기상 자료 중 강수량과 상대습도가 가장 큰 영향력을 보여주었다. 또한 다양한 기상 인자 기반 머신러닝 기법 적용 결과에서는 두 지역 모두 신경망(MLP) 기법을 제외한 모든 기법이 전반적으로 실측값과 유사한 형태를 보였으며 비교 그래프에서도 실측값과 예측 값이 유사한 추세를 나타냈다. 따라서 상관관계있는 과거 기상자료를 통해 머신러닝 기법 기반 토양수분의 시간적 변동 예측이 가능할 것으로 판단된다.

  • PDF

Predictation of Precipitation using Empirical Mode Decomposition (경험적 모드분해법을 활용한 우리나라 강수의 예측)

  • Choi, Wonyoung;Shin, Hongjoon;Kim, Taereem;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.147-147
    • /
    • 2016
  • 최근 기후변화로 인한 기상이변이 빈번히 발생하면서 그로 인한 피해도 점점 증가하고 있다. 이를 최소화하기 위해서는 기후변화가 강수에 미치는 영향에 대한 연구가 필요하며, 특히 강수의 기후변화를 고려한 장기적인 변동에 대한 예측이 매우 중요하다. 그 중, 기후변화로 인한 강수현상의 변화를 분석하기 위한 방법 중 하나로 강수 현상이 주변 기후 요소의 분포에 영향을 받는다는 가정 하에 기상인자를 통하여 강수를 예측하는 방법이 있다. 우리나라에 영향을 미치는 주변 기상인자들과 강수 간의 상관관계를 분석하여 상관관계가 높게 나타나는 기상인자를 통해 우리나라 강수량을 예측하면 장기적인 관점에서 강수 예측의 정확도를 높일 수 있다. 하지만 상관관계 분석에 있어서 강수 원 자료 와 기상인자간의 상관관계를 비교할 경우 원 자료가 가지는 큰 변동성으로 인해 정확한 상관관계 분석이 이루어지지 않을 가능성이 크다. 따라서 강수자료를 분해하여 분해된 요소별로 상관관계를 분석하여 분석의 정확도를 높일 필요가 있다. 다양한 자료 분해 방법중 경험적 모드분해법(Empirical Mode Decomposition, EMD)을 사용할 경우 자료의 분해에 있어서 주기성, 경향성에 따라 분해가 가능하며, 비정상성을 가지고 있는 시계열에 대해 효과적으로 분해가 가능한 장점이 있다. 본 연구에서는 30년 이상의 자료기간을 가지는 지점의 강수량 자료를 바탕으로 경험적 모드분해법을 이용하여 강수자료를 분해하고, 이를 다양한 기상인자와의 상관관계를 분석함으로써, 우리나라 강수량 변동과 연관이 있는 기상인자들을 선별하였다. 선별된 기상인지를 바탕으로 다중회귀분석을 수행하여 기상인자를 독립변수로 하는 강수 예측식을 구축하여 우리나라 강수의 예측 가능성을 살펴보고자 한다.

  • PDF

Development of Radar Rainfall Tracking Technique for the Short-Term Rainfall Forecasting (초단기강우 예측을 위한 기상레이더 강우장 추적기법 개발)

  • Kim, Tae-Jeong;So, Byung-Jin;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.2-2
    • /
    • 2015
  • 최근 국지성 집중호우 및 돌발홍수와 같은 급격한 기상변화로 인한 기상재해의 발생빈도가 증가함에 따라 기존 지상 기상관측소로부터 얻어지는 직접탐측 자료보다는 기상레이더와 위성영상 등 원격탐측 자료를 사용한 수문분야의 연구가 활발하게 진행되고 있다. 기상레이더는 넓은 지역에 걸쳐 실시간으로 강수현상 감시가 가능하며 지상우량계로는 파악이 불가능한 미계측 유역을 통과하는 국지적인 호우현상이나 강우장의 이동 및 변화의 파악도 빠른 시간에 가능한 장점이 있다. 본 연구는 기상레이더 공간적 분포와 지상관측소(AWS 및 ASOS) 자료를 연계한 통계적 레이더 강수량 추정(Quantitative Precipitation Estimation, QPE)과 레이더 강수장을 직접 추적하는 강수장 예측(Quantitative Precipitation Forecast, QPF)를 연계한 해석방안을 수립하였으며, 모형 적용과정은 다음과 같다. 첫째, 강우장의 공간적인 이동을 고려하기 위해 강우장으로 부터 이류(advection)패턴을 추출하여 각 강우세포가 가지는 이동방향 및 이동속도를 고려한 강우장 추적기법을 통하여 2시간의 선행시간을 가지는 강우장을 예측하고자 한다. 둘째, 과거 기상레이더 이미지와 지상관측소의 강수 특성을 파악한 후 앞서 예측된 레이더강우장의 형태와 가장 유사한 과거 레이더강우장과 동일 시간대에 지상관측소 강수시계열을 시나리오 형태로 구축한다. 본 연구를 통하여 개발된 기상레이더 영상 이미지 상관분석 기법을 활용한 초단기강우예측은 집중호우시 홍수 예 경보를 위한 수문모형의 입력자료로 활용이 가능하다. 즉, 수문모형과 연계한 고해상도 단기홍수 예측기술 적용이 가능할 것으로 판단되며, 향후 실시간 재해 예 경보에 활용성을 평가하고자 한다.

  • PDF