• 제목/요약/키워드: 기상발생모형

검색결과 615건 처리시간 0.034초

봄철과 가을철의 기상에 의한 전국 통합 산불발생확률 모형 개발 (Development of the National Integrated Daily Weather Index (DWI) Model to Calculate Forest Fire Danger Rating in the Spring and Fall)

  • 원명수;장근창;윤석희
    • 한국농림기상학회지
    • /
    • 제20권4호
    • /
    • pp.348-356
    • /
    • 2018
  • 본 연구는 현 국가산불위험예보시스템에서 실시간으로 분석되는 기상에 의한 산불발생확률 모형의 문제점을 개선하기 위하여 수행하였다. 기존 시스템의 문제점은 제주도를 포함한 9개의 도별 산불발생확률모형으로 인해 행정경계 지역에서 산불위험등급(관심-주의-경계-심각 4단계)의 차이가 발생하여 산불담당자들간 혼선을 야기할 수 있고, 이로 인해 인접 시군 경계 간 산불대응력이 떨어질 수 있다는 것이다. 이의 해결을 위해 기존 9개의 산불발생확률모형을 하나로 통합하는 산불발생확률모형을 개발하여 신뢰도 검증과 실제로 산불이 발생한 지점에서 예측된 산불위험지수 값을 추출하여 정확도 평가를 실시하였다. 새롭게 개발한 기상에 의한 봄철과 가을철의 전국 통합 산불발생확률 모형(DWI)은 국립산림과학원에서 운영하는 국가산불위험예보시스템에 반영하여 예측모델을 개선하였다. 연구 결과, 봄철 산불발생에 영향을 주는 기상변수로는 해당 시간대의 평균기온, 상대습도, 실효습도, 평균풍속이었으며, 가을철은 평균기온, 상대습도, 평균풍속으로 나타났으며 모두 99% 신뢰수준에서 통계적으로 유의한 것으로 나타났다. 봄철과 가을철의 전국 통합 산불발생확률 모형은 각각 $[1+{\exp}\{-(2.706+(0.088^*T_{mean})-(0.055^*Rh)-(0.023^*Eh)-(0.014^*W_{mean}))\}^{-1}]^{-1}$, $[1+{\exp}\{-(1.099+(0.117^*T_{mean})-(0.069^*Rh)-(0.182^*W_{mean}))\}^{-1}]^{-1}$으로 표본내 예측력은 봄철이 71.7%, 가을철은 86.9%로 나타나 모형의 적합도는 매우 높은 것으로 나타났다. 기존의 도별 9개 모형을 하나의 전국 통합 모형으로 적용할 경우 인접 행정경계에서 발생하는 위험등급의 차이를 해소하여 산불조심기간 중 발효되는 산불위험 단계별 조치사항의 이행에 혼란을 피할 수 있다는 장점이 있다. 새롭게 개발한 전국 통합 산불발생확률 모형(DWI)의 예측 결과 검증을 위해 2014년 봄철 발생한 산불 66건을 대상으로 산불위험지수의 정확도를 평가하였으며, 주의 단계인 산불위험지수 51이상으로 예측된 지역에서 실제로 산불이 발생한 비율은 기존 9개 모형에서 74.24% (산불 49건), 새롭게 개발한 전국 통합 모형에서는 83.33% (산불 55건)가 발생하여 약 9%의 정확도 향상을 보였다. 개발된 모형은 현재 운영중인 산림청 국립산림과학원의 국가산불위험예보시스템에 반영하여 산불이 가장 많이 발생하는 봄철과 가을철 건조시기의 산불발생위험을 정확히 예측하여 산불예방은 물론 진화자원의 효율적인 배치를 통해 시간과 인적 경제적 비용을 절감하고 산불피해를 최소화 할 수 있는 선택과 집중의 산불정책에 일조할 수 있을 것으로 기대된다.

장기 강우 예측을 위한 전지구적 기상인자 선정 및 시계열 모형 구축 (Long-term Precipitation Series Prediction Using Global Climate Indices in South Korea)

  • 김태림;서정호;주경원;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.16-16
    • /
    • 2017
  • 기후 시스템의 다양한 상호작용으로 인해 나타나는 대표적 현상인 강우는 수문학적 분석 과정의 필수적인 요소이며 장기 강우를 예측하는 것은 효율적인 수자원 관리에 중요한 기반이 되고 있다. 이러한 강우는 장기적으로 지구의 대기-해양 순환 패턴의 영향을 받으며, 특히 엘니뇨와 라니냐와 같은 기상 이변이 발생할 경우 대규모 순환에 변화가 일어나게 되어 강우에 영향을 미칠 수 있다. 따라서 본 연구에서는 지구의 순환 패턴 특성을 수치화한 전지구적 기상인자 중에서 우리나라 장기 강우를 예측하기 위한 기상인자를 선정하고 시계열 모형 구축을 통하여 예측력을 평가하였다. 이를 위해 강우에 내재된 다양한 대기-해양 순환 패턴으로부터 나타나는 주기적 요소를 추출하기 위해 앙상블 경험적 모드분해법을 사용하여 강우를 분해한 후, 각 분해된 강우자료와 전지구적 기상인자와의 상관성 분석을 통해 높은 상관성을 가진 기상인자를 선별하고 단계식 변수선택법으로부터 유의미한 기상인자를 최종적으로 선정하였다. 그 결과, 우리나라 기상청 60개 지점의 월별 강우자료 중 전반적으로 영향을 미치는 기상인자를 선정할 수 있었으며, 선정된 기상인 자로 구축된 시계열 모형을 통해 우리나라 장기 강우를 예측하였다.

  • PDF

실시간 하천유량 예측을 위한 기상청 AWS 자료의 활용성 평가 (Availability of AWS data from KMA for real-time river flow forecast)

  • 이병주;장기호;최영진
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.131-131
    • /
    • 2011
  • 기후변화로 인한 기상이변 현상이 빈번하게 발생하면서 홍수와 같은 자연재해의 피해규모가 증가하고 있다. 이를 극복하기 위해 최근에는 구조적 대책뿐만 아니라 홍수예측시스템과 같은 비구조적 대책에도 많은 관심과 연구가 이루어지고 있다. 통상 홍수예측을 위해서는 예측강우의 정확도가 중요하게 부각되지만 중규모 이상의 유역에서는 수 시간의 지체시간 효과로 인해 AWS 실황강우만으로도 어느정도 선행시간에 대해서 하천유량예측이 가능하다고 할 수 있다. 본 연구에서는 기상청 AWS 실황강우를 이용하여 하천유량을 예측할 경우 어느정도 선행시간과 정확도를 확보할 수 있는지에 대해서 분석하고자 한다. 분석을 위한 시단위 강우자료와 기상자료는 각각 AWS와 ASOS 자료를 이용하였다. 또한 하천유량 모의를 위한 강우-유출모형으로는 SURF 모델(Sejong University River Forecast Model)을 이용하였다. 이 모형은 저류함수모형 기반의 연속형 강우-유출모형으로 미래에 대한 유출모의결과의 정확도를 향상시키기 위해 앙상블 칼만필터링 기법을 연계한 모형이다. 그림 1은 충주댐유역에 대해서 2009.7.8~17일(240시간)에 대해서 관측유량 자료동화 전후의 결과를 나타낸 것이다. 현시점을 100, 105, 110, 115시간으로 가정하고 미래기간에 대해서는 관측강우를 0으로 가정했을 때 대략 첨두유량 발생 5시간 전에 예측된 모의유량이 관측유량과 거의 일치함을 확인할 수 있다. 따라서 실황강우와 관측유량 자료동화 기법을 연계할 경우 수 시간의 선행시간에 대해서 유량예측이 가능한 것으로 판단된다.

  • PDF

우리나라의 시 단위 극치자료 추정기법 개발 (An Hourly Extreme Data Estimation Method Developed in South Korea)

  • 김용탁;도기봉;한영천;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.18-18
    • /
    • 2017
  • 우리나라뿐만 아니라 세계의 여러 국가에서 과거 발생 했던 강수의 통계적 특성에서 벗어나는 극치사상이 빈번 하게 관측되고 있다. 이와 같은 현상에 가장 큰 영향을 미치고 있는 요인중 하나로서 지구온난화가 원인으로 고려되고 있으며 실제 산업화 이후 온실가스의 증가와 더불어 극한 기상현상의 발생 빈도가 증가하였다. 우리나라는 과거 발생패턴과는 다른 극치 강우 사상이 빈번하게 관측되고 있으며 이로 인한 피해도 증가되고 있는 상황이다. 이러한 점에서 기존의 연구에서 개발한 계절강수량을 입력 자료로 하여 극치강수량을 추정할 수 있는 비정상성 Four - Parameter(4P)-Beta분포를 이용한 알고리즘을 본 연구에서는 기상인자를 이용하여 모형 내에서 계절강수량을 직접적으로 예측할 수 있는 알고리즘을 추가하여, 이를 직접적으로 일단위 이하의 극치강수량을 상세화 시킬 수 있는 모형으로 확장하고자 하며, 이를 통해 기상변동성을 다양한 시간규모에서 고려하기 위한 정보로 활용하고자 하였다.

  • PDF

미래 기후변화에 따른 재해위험도 예측 (Disaster risk prediction under the condition of future climate change)

  • 이정주;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.125-125
    • /
    • 2011
  • 본 연구에서는 기후변화에 의한 자연재해 취약성을 정량적으로 분석하기 위하여 기상인자와 재해발생으로 인한 피해액의 상관관계를 이용하였다. 재해로 인한 피해액은 1994년부터 2008년까지 15년간 전국 시군별로 피해액을 집계한 자료를 이용하였으며, 우리나라 58개 강우관측소의 일강수량 자료를 이용하여 재해에 영향을 줄 수 있는 네 가지 인자를 추출하였고, 연도별 태풍 발생 횟수도 하나의 기상인자로 고려하였다. 피해액의 규모는 가뭄, 화재, 태풍 및 해일 등 재해발생 유형에 따라서도 영향을 받겠지만, 기후변화 시나리오에 의해 예측할 수 있는 대표적인 미래 추정값은 강수량과 온도 등이며, 결국 재해발생 유형별 시나리오에 의한 재해규모 예측이 아닌 기후변화 시나리오에 의한 미래 재해발생 규모 모형을 구축하기 위해서는 관련 인자로서 강수량으로부터 추출한 인자들을 고려할 수밖에 없을 것이다. 일강수량으로부터 추출한 네 가지 영향인자들은 80mm이상 일강수량 발생일수, 80mm이상 일강수량의 합, 80mm이상 강우의 발생 간격이 30일 이하인 횟수 및 연최대강수량이다. 우선 광역시와 도별로 전국 58개 관측소를 분류하고, 해당 관측소들로부터 추출된 인자들의 평균값을 이용하여 연구를 진행하였다. 미래 강수량 자료는 국립기상연구소의 A2시나리오를 통계학적 Downscaling을 통해 재생산한 자료를 이용하였다. 예측모형은 Bayesian 모형을 기반으로 DEXP(double exponential distribution) 확률분포를 이용하였다. 재해피해액 를 아래와 같이 비정상성 모형으로 구성하였으며, 위치매개 변수의 확률분포를 네 가지 기상인자에 의한 회귀식으로 구성하였다. Y damage costs) = dexp(${\mu}(t),\tau(t)$) $p({\mu}(t))\sim(abs({\alpha}+{\alpha}_1X_1+{\alpha}_2X_2+{\alpha}_3X_3+{\alpha}_4X_4,\;\sigma_{\alpha}^2)$ $p(\tau){\sim}G(k,s)$.

  • PDF

국내 기상정보를 이용한 가뭄전망기법 연구 (A Drought Outlook Study Using Climate Information in Korea)

  • 김영오;이재경;고양수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1590-1596
    • /
    • 2009
  • 최근 기후변화의 영향으로 인한 기상이변으로 인해 세계적으로 많은 피해가 발생하고 있으며, 규모도 점점 커지고 있다. 특히 가뭄에 대한 피해는 더욱 더 심화되는 현상으로 보이고 있다. 본 연구에서는 국내에 적합한 월단위와 주단위 가뭄전망을 제시하였다. 월단위 전망에서는 앙상블 기법을 기반으로 기상청에서 제공하는 월간산업기상정보의 적용에 따른 가뭄전망 정확성을 비교하였다. 주단위 전망에서는 기상청에서 제공하는 GDAPS를 이용하여 확정론적 가뭄전망을 하였다. 가뭄지수로서는 강수, 유량, 지하수위를 인자로 하는 MSWSI(Modified Surface Water Supply Index)를 가뭄지수로 사용하였으며, MSWSI는 5개 구간으로 나누었다. 월단위 가뭄전망에서는 물수지모형인 abcd모형에 과거 강수와 잠재증발산량 시나리오를 입력변수로 하여 최종적으로 유량과 지하수위 시나리오를 생산하여, 확률 가뭄전망을 위해 각 구간의 발생확률을 산정하고 실측자료로부터 산정한 MSWSI와 비교하였다. 정확성 평가를 위해서 RPS(Ranked Probability Score)를 이용하였다. 금강유역에 적용한 결과, 이수기(10월-이듬해 6월)에는 4개 달이 초보전망보다 높았으나 전체 RPS는 1.87로서 초보전망의 1.84보다 높아 현재 월단위 가뭄전망기법에는 많은 불확실성이 존재하였다. 또한 월간산업기상정보를 이용한 월단위 가뭄전망에서도 초보전망보다 정확성이 낮아, 현재 중장기 기상정보를 이용하기에는 어려운 것으로 나타났다. 주단위 가뭄전망에서는 abcd모형에 GDAPS를 입력변수로 하여 확정론적 MSWSI를 산정하여 실측자료로부터 산정한 MSWSI와 비교하였으며, Hit ratio를 이용하여 그 정확성을 평가하였다. 주단위 가뭄전망 결과, 주단위 가뭄전망의 Hit ratio가 0.480으로서 초보전망보다 높아 주단위 가뭄전망은 효용성이 있음을 입증하였다. 본 연구에서 적용기간이 짧아 가뭄전망의 정확성을 판단하기는 이르나, 월단위 가뭄전망에서는 기상정보의 정확성이 향상에 따라 가뭄전망의 정확성도 향상될 것으로 판단된다. 장기적으로 본 연구 결과를 토대로 단기와 중장기 가뭄전망을 수행하고 평가한다면, 가뭄전망에 대한 신뢰도가 더 높아질 것으로 사료된다.

  • PDF

나이브 베이즈 분류와 기상예보자료 기반의 농업용 저수지 저수율 전망을 위한 저수율 예측 다중선형 회귀모형 개발 (Development of Multiple Linear Regression Model to Predict Agricultural Reservoir Storage based on Naive Bayes Classification and Weather Forecast Data)

  • 김진욱;정충길;이지완;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.112-112
    • /
    • 2018
  • 최근 이상기후로 인한 국부적인 혹은 광역적인 가뭄이 빈번하게 발생하고 있는 추세이며 발생횟수 뿐 아니라 가뭄 심도 및 지속기간이 과거보다 크게 증가하여 그에 따른 피해가 커질 것으로 예측되고 있다. 특히, 2014~2015년도의 유례없는 가뭄으로 인해 저수지 용수공급이 제한되면서 많은 농가들이 피해를 입었다. 본 연구의 목적은 전국 농업용 저수지를 대상으로 기상청 3개월 예보자료를 활용 할 수 있는 농업용 저수지 저수율 다중선형 회귀 모형을 개발하여 저수율 전망정보를 생산하는 것이다. 본 연구에서는 전국에 적용 가능한 저수율 다중선형 회귀 모형개발을 위해 5개의 기상요소(강수량, 최고기온, 최저기온, 평균기온, 평균풍속)와 관측 저수지 저수율을 활용했다. 기상자료는 2002년부터 2017년까지의 기상청 63개 지상관측소로부터 기상관측자료를 수집하였다. 본 연구에서는 저수율 전망 단계를 세 단계로 나누었다. 첫 번째 단계로 농어촌공사에서 전국 511개 용수구역을 대상으로 군집분석 및 의사결정나무 분석을 통해 제시한 65개 대표저수지를 대상으로 기상자료 및 관측 저수율 자료를 이용하여 다중선형 회귀분석을 실시하였다. 수집한 기상요소와 저수율을 독립변수로 하여 월별 회귀식을 산정한 결과 결정계수($R^2$)는 0.51~0.95로 나타났다. 두 번째 단계로 대표저수지의 회귀분석 결과를 전국의 저수지로 확대하기 위해 나이브 베이즈 분류법을 적용하여 전국 3098개의 저수지를 65의 군집으로 분류하고 각각의 군집에 해당되는 월별 회귀식을 산정하였다. 마지막으로 전국 저수지로 산정된 회귀식과 농업 가뭄 예측을 위해 기상청의 GS5(Global Seasonal Forecasting System 5) 3개월 예보자료를 수집하여 회귀식에 적용해 2017년 전국 저수지의 3개월 저수율 전망정보를 생산하였다. 본 연구의 전국 저수지 군집결과 기반의 저수율 전망기술은 2017년도 관측 저수율과 비교한 결과 유의한 상관성을 나타냈으며 이 결과는 추후 농업용 저수지의 물 공급 및 농업가뭄 전망 자료로서 이용이 가능할 것으로 판단된다.

  • PDF

기후변화에 따른 농촌 소유역에서의 비점오염 영향 분석 (Climate Change Impact on Nonpoint Source Pollution in a Rural Small Watershed)

  • 황세운;장태일;박승우
    • 한국농림기상학회지
    • /
    • 제8권4호
    • /
    • pp.209-221
    • /
    • 2006
  • 본 연구에서는 향후 강수량의 변화가 유역의 비점오염 발생 부하량에 미치는 영향에 대한 정량적 분석을 목적으로, 발안유역의 HP#6 소유역을 대상유역으로 선정하여 자료를 구축하고 유역규모의 수문수질 모델인 GWLF 모형의 시험유역에 대한 적용성 검토를 수행하였으며, WGEN 모형을 이용하여 일 기상자료를 발생시켜 대상유역의 향후 기후변화를 고려한 발생 오염부하량 변화를 예측하였다. 본 연구의 결과를 요약하면 다음과 같다. 1. 기상 변화에 따른 유역의 비점오염 영향 분석을 위하여 대상유역을 선정하고 기상, 수문, 수질자료와 오염원 현황을 비롯한 유역 특성 자료를 조사하고 수집하였으며, 수문모형으로는 GWLF 모형을 선정하였다. 2. GWLF모형의 보정과 검정 과정에서 모의된 일유출량은 $R^2$$0.40{\sim}0.98$로 GWLF 모형은 농촌 소유역에 대해 적용성이 있는 것으로 판단되며, 모의한 오염부하량과 실측치를 비교한 결과, $R^2$가 유사량은 $0.40{\sim}0.98$, TN은 $0.50{\sim}0.94$, TP는 $0.59{\sim}0.97$로 높게 나타났으며, 모형의 효율지수도 유출이 $0.51{\sim}0.69$, 유사량이 $0.23{\sim}0.84$, 그리고 영양염류의 경우는 $0.38{\sim}0.65$로 비교적 양호한 값을 나타내었다. 3. 수원 기상청으로부터 1964년${\sim}$2004년의 강수량 자료를 수집하여 대상유역을 포함하는 지역의 일 강수량과 강우 발생빈도에 대한 10년-이동평균과 회귀식을 이용하여 추세분석을 실시함으로서 기후변화에 따른 기상인자의 영향을 확인하였으며, 10년-이동평균을 이용하여 강우 발생 빈도에 대한 추세를 살펴본 결과, 0.2 mm 이상의 강수량을 기록한 연간 일수는 감소하나, 80 mm이상의 강수량을 기록한 호우 발생 연간일수는 증가하는 것을 확인할 수 있었다. 4. IPCC에서 제시한 미래 배출 시나리오에 따른 한반도 기후변화를 고려하여 WGEN 모형을 응용함으로서 향후 $2041{\sim}2050$년의 남한 지역 월 강수량과 월평균기온의 변화율을 적용한 강수량과 평균 기온에 대한 일 기상자료를 발생시켰으며, 수원 지방의 강우 일수 변화 추세를 고려하기 위해 WGEN모형의 마코브체인 매개변수를 수정하여 시나리오별 기상자료 집합을 구축하였다. 5. 강수량 증가에 따른 유출량을 비롯한 영양물질 부하량의 변화는 선형적 상관성을 보였으나, 유사량의 경우는 강수량 변화가 없고 강우일수가 감소하면서 사상별 최대 일강수량이 증가하는 경우에 대한 모의 결과가 평균 21%정도 증가하는 것으로 나타나, 강우 강도와 관련성이 큰 것으로 분석되었다. 6. 연 강수량이 17.4% 증가해 월별 평균 강수량 변화가 가장 큰 시나리오 Al은 연 유출량이 24.6% 증가하고, 유사량과 TN, IP 부하량은 각각 60.1%, 14.4%, 27.1%증가하는 것으로 나타났으며, 이에 비하여 연 강수량 증가가 2.5%로 가장 작은 시나리오 B1의 연 유출량 변화는 -0.4% 감소하는 것으로 나타났고, 유사량과 TN, TP 부하량은 각각 14.6%, 3.0%, 7.2% 증가하는 것으로 모의되었다. 7. 강우 발생 일수 변화를 가정한 시나리오에 대한 모의 결과, 연강우일수가 약 10일 감소한 A1-1, A2-1, B1-1, B2-1의 경우, 강우 일수 감소 이전과 연 유출량 변화는 거의 없었으나, 유사량과 영양물질 부하량은 다소 증가하는 것으로 나타났고 연강우일수를 약20일 감소시킨 A1-2, A2-2, B1-2, B2-2의 경우는 강우일수를 감소시키기 이전에 비해 유출량이 $4{\sim}6%$ 정도 더 증가하였으며, 유사량은 $20{\sim}25%$, TN 부하량은 $4{\sim}5%$, TP 부하량은 $9{\sim}12%$가 더 증가하여 발생하는 것으로 나타났다.

다중 입력 딥러닝을 이용한 서리 발생 추정 (Estimation of Frost Occurrence using Multi-Input Deep Learning)

  • 김용석;허지나;김응섭;심교문;조세라;강민구
    • 한국농림기상학회지
    • /
    • 제26권1호
    • /
    • pp.53-62
    • /
    • 2024
  • 본 연구에서는 딥러닝을 이용한 모형을 이용해서 우리나라 지역에 대한 서리 발생 예측 모형을 구축하였다. 딥러닝 모형의 학습 데이터로 다양한 기상인자들(최저기온, 풍속, 상대습도, 구름량, 강수량)을 사용하였으며, 기상인자들에 대한 통계적 분석 결과, 서리가 발생한 날과 서리가 발생하지 않은 날에 대해 각 요소별로 유의한 차이가 있는 것을 볼 수 있었다. 단일 딥러닝 모형 3가지와 다중 입력 딥러닝 모형 3가지를 이용하여 서리발생을 추정한 결과, 평균적으로 MLP가 가장 정확도가 낮았으며, LSTM, GRU 순으로 정확도가 높게 나타났고, 다중 입력 딥러닝 모형의 경우 3가지 모형이 거의 비슷한 결과가 나타났지만 그 중 평균적으로 GRU와 MLP를 이용한 모형이 가장 정확도가 높았다. 또한, 단일 딥러닝이 다중 입력 딥러닝에 비해 샘플에 따라 정확도 편차도 더 컸다. 이에 따라 결과적으로 단일 딥러닝 기반의 서리발생 예측 모형보다 다중 입력 딥러닝 기반의 서리발생 예측 모형이 안정성과 정확도와 재현율 측면에서 다소 우수한 것을 확인할 수 있었다.

기후변화 시나리오의 상세화를 위한 인공신경망과 LARS-WG의 모의 기법 평가 (Comparison of Artificial Neural Networks and LARS-WG for Downscaling Climate Change Scenarios)

  • 김지혜;강문성;송인홍
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.124-124
    • /
    • 2012
  • 기후변화가 수자원에 미치는 영향을 예측하는 데에 널리 사용되는 GCMs (General Circulation Models)는 모의 결과의 시 공간적 해상도가 낮기 때문에 상세화 (Downscaling) 기법을 거쳐 수문 모형에 적용된다. 상세화 기법은 크게 역학적 상세화 (Dynamical downscaling)와 통계적 상세화 (Statistical downscaling)로 구분되며, 종류가 매우 다양하고 각각의 모의 능력에 차이가 있으므로 적절한 기법을 선택할 필요가 있다. 본 연구의 목적은 통계적 상세화 기법 중 인공신경망과 LARS-WG 모형을 활용하여 CGCM3.1 T63의 모의 결과를 상세화하고, 두 모형의 모의 결과를 비교하는 데에 있다. 인공신경망은 비선형함수에 의한 전이함수 모형인 반면 LARS-WG는 추계학적 기상 발생기 모형으로, 각 모형을 이용해 CGCM3.1 T63의 강수량 및 평균기온 모의 결과를 서울 지역에 대해 공간적으로 상세화하였다. 모형의 검 보정은 1971년부터 2000년까지 30년 동안의 서울 관측소 일 기상 자료와 CGCM3.1 T63 (20C3M 시나리오) 모의 결과를 이용하여 수행하였다. 각 기법의 비교 및 평가는 2001년부터 2011년까지 11년 동안의 일 기상 자료와 CGCM3.1 T63 (IPCC SRES A1B 시나리오) 모의 결과를 이용하였다. 분석 결과, 인공신경망 모형은 입력 자료의 형태에 따라 모의 결과가 크게 달라지는 특성을 보였으며, LARS-WG 모형은 강수량을 실제보다 과소 추정하는 경향을 보였다. 본 연구에서는 강수량과 평균기온만을 대상으로 하였으나, 추후에 다른 기상인자를 고려함으로써 모형의 적용성을 보다 종합적으로 판단할 수 있을 것이다.

  • PDF