• Title/Summary/Keyword: 기상레이더 UF데이터

Search Result 4, Processing Time 0.14 seconds

Design of Meteorological Radar Echo Classifier Using Fuzzy Relation-based Neural Networks : A Comparative Studies of Echo Judgement Modules (FNN 기반 신경회로망을 이용한 기상 레이더 에코 분류기 설계 : 에코판단 모듈의 비교 분석)

  • Ko, Jun-Hyun;Song, Chan-Seok;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.562-568
    • /
    • 2014
  • There exist precipitation echo and non-precipitation echo in the meteorological radar. It is difficult to effectively issue the right weather forecast because of a difficulty in determining these ambiguous point. In this study, Data is extracted from UF data of meteorological radar used. Input and output data for designing two classifier were built up through the analysis of the characteristics of precipitation and non-precipitation. Selected input variables are considered for better performance and echo classifier is designed using fuzzy relation-based nueral network. Comparative studies on the performance of echo classifier are carried out by considering both echo judgement module 1 and module 2.

Design of Meteorological Radar Echo Classifier Based on RBFNN Using Radial Velocity (시선속도를 고려한 RBFNN 기반 기상레이더 에코 분류기의 설계)

  • Bae, Jong-Soo;Song, Chan-Seok;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.242-247
    • /
    • 2015
  • In this study, we propose the design of Radial Basis Function Neural Network(RBFNN) classifier in order to classify between precipitation and non-precipitation echo. The characteristics of meteorological radar data is analyzed for classifying precipitation and non-precipitation echo. Input variables is selected as DZ, SDZ, VGZ, SPN, DZ_FR, VR by performing pre-processing of UF data based on the characteristics analysis and these are composed of training and test data. Finally, QC data being used in Korea Meteorological Administration is applied to compare with the performance results of proposed classifier.

Adjustment of Radar Mean-field Bias Considering Orographic Effect (산악효과를 고려한 Mean-field bias의 보정)

  • Kim, Young-Il;Sung, Gyung-Min;Hwang, Man-Ha;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1136-1140
    • /
    • 2009
  • 지상강우 관측망을 이용한 강우량 측정의 대안으로서 사용되는 기상 레이더를 활용한 강우량 추정의 경우, Z-R 방정식을 이용하여 반사도를 강우량으로 환산하는 방법을 일반적으로 사용한다. 이때 발생하는 각종 오차는 레이더 장비가 가지는 기계적인 오차뿐만 아니라 Z-R 방정식이 가지는 오차 등이 있으며, 이를 보정하기 위해서 레이더를 활용하여 추정된 강우량에 지상강우량계와 레이더강우량과의 비율인 G/R비를 보정하는 방법을 일반적으로 사용한다. 본 연구에서는 이와 같이 레이더 강우량을 보정하기 위해서 사용되는 G/R비를 산정하는데 미치는 지형적인 효과를 고려하기 위해서 광덕산 레이더 유효범위 100km 내(군사분계선 이북 미포함)의 지역에 대하여 군집분석을 실시하여 크게 산악지역과 평야지역으로 구분하고, 각각 구분된 지역에 대하여 G/R 비를 산정하여 초기추정 레이더 강우량에 곱하는 mean-field bias 보정을 실시하였다. 광덕산 레이더 기상관측소의 유효범위 100km 내의 2007년, 2008년 홍수기(6/21${\sim}$9/20)기간 동안 94개 Automatic Weather Station(AWS)지점에 대하여 크게 산악지역과 평야지역으로 지역화 시키는 방법은 비계층적 군집분석 기법 중 fuzzy-c mean 방법을 적용하였다. 또한 광덕산 레이더 반사도 기본 자료는 차폐영역으로 생기는 반사도 데이터 누락을 보완하기 위하여 0도와 1.5도 sweep 합성 10분단위 uf 자료를 사용하였으며, AWS와 보정이 이루어지는 레이더 격자의 크기는 최대 4km${\times}$4km로 선정하였다. 본 연구에 있어서 검증방법은 지역을 구분하기 전과 후를 AWS 실측 관측값과 절대상대오차, 평균제곱근 오차로써 비교하였다.

  • PDF

Design of Event and Echo Classifier Realized with the Aid of Interval Type-2 FCM based RBFNN : Comparative Studies of LSE and WLSE (Interval Type-2 FCM based RBFNN의 도움으로 실현된 사례 및 에코 분류기 설계 : LSE와 WLSE의 비교연구)

  • Song, Chan-Seok;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1347-1348
    • /
    • 2015
  • 본 논문에서는 기상레이더 데이터에서 섞여있는 강수에코 및 비강수에코를 분류하기 위하여 Interval Type-2 FCM based RBFNN의 도움으로 사례 및 에코 분류기의 설계를 제안한다. 학습과 테스트 데이터는 현재 기상청에서 사용하는 UF radar data를 사용하였으며, 사례 분류기와 에코패턴 분류기의 데이터를 각각 생성한다. 전처리 과정인 사례 분류를 통하여 강수사례 혹은 비강수사례를 분류하여 강수사례일 경우 에코패턴분류를 진행하며, 비강수사례일 경우 데이터에 관측된 모든 반사도 값을 제거한다. 사례 및 에코 분류기는 Interval Type-2 FCM based RBFNN을 통하여 패턴분류를 진행하며, 패턴분류 성능을 확인한다. 또한 후반부 파라미터의 동정 시, 각 규칙에 파라미터를 전역적으로 구하는 LSE와 각 규칙에 대한 파라미터를 독립적으로 구하는 WSLE의 비교연구를 수행한다. 분류기의 성능을 확인하기 위하여 사례 분류 후 에코패턴분류의 결과는 현재 기상청에서 사용하고는 품질검사(QC) 데이터와 비교하여 평가하였다.

  • PDF