• Title/Summary/Keyword: 기류흐름

Search Result 25, Processing Time 0.024 seconds

Improvement of Energy Efficiency of Plants Factory by Arranging Air Circulation Fan and Air Flow Control Based on CFD (CFD 기반의 순환 팬 배치 및 유속조절에 의한 식물공장의 에너지 효율 향상)

  • Moon, Seung-Mi;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • As information technology fusion is accelerated, the researches to improve the quality and productivity of crops inside a plant factory actively progress. Advanced growth environment management technology that can provide thermal environment and air flow suited to the growth of crops and considering the characteristics inside a facility is necessary to maximize productivity inside a plant factory. Currently running plant factories are designed to rely on experience or personal judgment; hence, design and operation technology specific to plant factories are not established, inherently producing problems such as uneven crop production due to the deviation of temperature and air flow and additional increases in energy consumption after prolonged cultivation. The optimization process has to be set up in advance for the arrangement of air flow devices and operation technology using computational fluid dynamics (CFD) during the design stage of a facility for plant factories to resolve the problems. In this study, the optimum arrangement and air flow of air circulation fans were investigated to save energy while minimizing temperature deviation at each point inside a plant factory using CFD. The condition for simulation was categorized into a total of 12 types according to installation location, quantity, and air flow changes in air circulation fans. Also, the variables of boundary conditions for simulation were set in the same level. The analysis results for each case showed that an average temperature of 296.33K matching with a set temperature and average air flow velocity of 0.51m/s suiting plant growth were well-maintained under Case 4 condition wherein two sets of air circulation fans were installed at the upper part of plant cultivation beds. Further, control of air circulation fan set under Case D yielded the most excellent results from Case D-3 conditions wherein air velocity at the outlet was adjusted to 2.9m/s.

A Study on The Day of Week Effect in International Stock Markets : Focusing on the Settlement and Clearing Procedure (세계증권시장에서 주중 요일별 수익률 효과 분석의 연구 : 결제청산과정을 중심으로)

  • Kim, Kyung-Won
    • The Korean Journal of Financial Management
    • /
    • v.20 no.2
    • /
    • pp.201-234
    • /
    • 2003
  • This paper examines the day of the week effect focusing on the effect of the settlement procedures on the stock price in seven major international stock markets. Settlement dates or procedures may have an effect on rate of return distributions in international stock markets. Those Settlement procedures are different among various international stock markets. Furthermore, several international stock markets change their systems of settlement procedures. On the New York stock exchanges, stock transactions are settled in five business days after the transaction. However, they changed settlement procedures from five business days to three business days from 1995. Those settlement procedures on the London stock exchanges and the Paris stock exchanges were changes from the fixed settlement date systems to the fixed settlement lag systems. Thus, this paper examines the effect of the changes in settlement procedures on the stock price in several stock markets. I found that changes of settlement dates or procedures have an effect on the rate of return distributions for specific days in some stock markets. This paper also examines the day of the week effect for seven international stock markets. I found that strong weekend effect before the period of 1990. However, the weekend effect has disappeared during the period from 1990 to 2002 in international stock markets.

  • PDF

Improvement of Capturing Velocity in the Fume Hood using Computational Fluid Dynamics(I) - Uniform flow (전산유체역학을 이용한 흄후드 제어유속 개선(I) - 균일류)

  • Jung, Jong-Hyeon;Lee, Sang-Woon;Lee, Sang-Man;Shon, Byung-Hyun;Lee, Jung-Hee;Jung, Yu-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.962-969
    • /
    • 2013
  • This study used Computational Fluid Dynamics(CFD) to assess the properties of the air current inflow and the flow velocity distribution in the fume hood. In order to verify the effect of improvement, it was also predicted the characteristics of the flow pattern in case the hood face is structurally improved. The assessment of the capture velocity with the existing fume hood confirmed maximum 23 to 30% difference as compared to the root mean square (RMS). And the hood face showed great difference in flow velocity, with the flow velocity in the upper part is 58 to 68% faster than that in the lower part of the hood. So, as a result of the improvement of the hood designed to maintain a steady exhaust at the hood face (that is, installing a baffle on the inner wall and designing the slot type face), a difference of maximum 7% as compared to RMS appeared while maximum 12% differentiation in flow velocity through sections was predicted, showing mitigation of much of the difference in control velocity as compared to the previous structure.

Effects of Circulation Fans on Uniformity of Meteorological Factors in Warm Air Heated Greenhouse (순환팬이 온풍난방 온실의 기상분포 균일화에 미치는 영향)

  • Yu, In-Ho;Cho, Myeong-Whan;Lee, Si-Young;Chun, Hee;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.291-296
    • /
    • 2007
  • This study was conducted to investigate the effects of horizontal air flow produced by circulation fans on horizontal and vertical profiles of meteorological factors. The three-dimensional distributions of air speed, air temperature, relative humidity and carbon dioxide $(CO_2)$ concentration were measured with and without the fans in operation. The uniformity of the spatial distribution of meteorological factors decreased as the outside air temperature decreased. In "fans off" condition, spatial variations of $4.7^{\circ}C$ in air temperature, 19% in relative humidity were detected. When the fans were operated, these variations were reduced to 2.2 and 6.3%, respectively. As the fan capacity increased, the difference in air temperature among sampling points decreased. The fan capacity of $0.0104m^3{\cdot}s^{-1}{\cdot}m^{-2}$ was enough to obtain a reasonable air flow in greenhouse. The vertical profiles of air temperature and $CO_2$ concentration were reasonably uniform regardless of measurement height and fan capacity. Further researches on the position of fans to reduce the difference in air temperature along the width and the effects of using a larger number of smaller fans are required.

A Numerical Study on the Effects of Meteorological Conditions on Building Fires Using GIS and a CFD Model (GIS와 전산유체역학 모델을 이용한 기상 조건이 건물 화재에 미치는 영향 연구)

  • Mun, Da-Som;Kim, Min-Ji;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.395-408
    • /
    • 2021
  • In this study, we investigated the effects of wind speed and direction on building fires using GIS and a CFD model. We conducted numerical simulations for a fire event that occurred at an apartment in Ulsan on October 8, 2020. For realistic simulations, we used the profiles of wind speeds and directions and temperatures predicted by the local data assimilation and prediction system (LDAPS). First, using the realistic boundary conditions, we conducted two numerical simulations (a control run, CNTL, considered the building fire and the other assumed the same conditions as CNTL except for the building fire). Then, we conducted the additional four simulations with the same conditions as CNTL except for the inflow wind speeds and direction. When the ignition point was located on the windward of the building, strong updraft induced by the fire had a wide impact on the building roof and downwind region. The evacuation floor (15th floor) played a role to spread fire to the downwind wall of the building. The weaker the wind speed, the narrower fire spread around the ignition point, but the higher the flame above the building reaches. When the ignition point was located on the downwind wall of the building, the flame didn't spread to the upwind wall of the building. The results showed that wind speed and direction were important for the flow and temperature (or flame) distribution around a firing building.