• Title/Summary/Keyword: 기동

Search Result 2,077, Processing Time 0.024 seconds

The Parallelization Effectiveness Analysis of K-DRUM Model (분포형 강우유출모형(K-DRUM)의 병렬화 효과 분석)

  • Chung, Sung-Young;Park, Jin-Hyeog;Hur, Young-Teck;Jung, Kwan-Sue
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.21-30
    • /
    • 2010
  • In this paper, the parallel distributed rainfall runoff model(K-DRUM) using MPI(Message Passing Interface) technique was developed to solve the problem of calculation time as it is one of the demerits of the distributed model for performing physical and complicated numerical calculations for large scale watersheds. The K-DRUM model which is based on GIS can simulate temporal and spatial distribution of surface flow and sub-surface flow during flood period, and input parameters of ASCII format as pre-process can be extracted using ArcView. The comparison studies were performed with various domain divisions in Namgang Dam watershed in case of typoon 'Ewiniar' at 2006. The numerical simulation using the cluster system was performed to check a parallelization effectiveness increasing the domain divisions from 1 to 25. As a result, the computer memory size reduced and the calculation time was decreased with increase of divided domains. And also, the tool was suggested in order to decreasing the discharge error on each domain connections. The result shows that the calculation and communication times in each domain have to repeats three times at each time steps in order to minimization of discharge error.

Sexual maturation of the bluespotted mud hopper, Boleophthalmus Pectinirostris(Linnaeus) (짱뚱어, Boleophthalmus pectinirostris(Linnaeus)의 성 성숙)

  • CHUNG Ee-Yung;AN Cheul-Min;LEE Taek-Yuil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.3
    • /
    • pp.167-176
    • /
    • 1991
  • Sexual maturation of the bluespotted mud hopper, Boleophthalmus Pectinirostris(Linnaeus) was investigated histologically on the gonadal development, and studied by gonadosomatic index(GSI), egg diameter composition. Samples were collected in the intertidal zone of Wolyon-ri, Hoihyon-myon, Okku-gun, Chollabuk-do, Korea, from April to October in 1988 and from June to August in 1989. The ovary is a pair of sac-shaped organ. The testis is a pair of tubule-shaped organ and it is connected to the seminal vesicle which is located at the posterior end of the testis. In male and female, GSI began to increase from late May when the water temperature began to increase and reached the maximum value in June and July, respectively. It began to decrease from August, the highest water temperature season. Thereafter, maintained relatively low values until October. The annual reproductive cycle of this species could be classified into four sucessive developmental stages: growing stage$(April{\~}May)$, mature stage$(June{\~}early\;July)$, ripe and spent stage(late lune-early August), degenerative and resting stage$(late\;August{\~}March:\;the wintering\;period)$. According to the frequency distributions of egg diameters in the spawning season, Boleophthalmus Pectinirostris was species to spawn twice or more in the spawning season.

  • PDF

Real-time Feedback Vibration Control of Structures Using Wireless Acceleration Sensor System - System Design and Basic Performance Evaluation - (무선 가속도센서 시스템을 이용한 건축물의 실시간 피드백 진동제어 - 시스템 구축 및 기초성능 평가 -)

  • Jeon, Joon Ryong;Park, Ki Tae;Lee, Chin Ok;Heo, Gwang Hee;Lee, Woo Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.21-32
    • /
    • 2013
  • This is a preliminary study for the real-time feedback vibration control of building structures. The study developed a wireless acceleration sensor system based on authentic technology capacities, to integrate with the Prototype AMD system and ultimately construct the feedback vibration control system. These systems were used to evaluate the basic performance levels of the control systems within model building structures. For this purpose, the study first developed a wireless acceleration sensor unit that integrates an MEMS sensor device and bluetooth communication module. Also, the study developed an operating program that enables control output based on real-time acceleration response measurement and control law. Furthermore, the Prototype AMD and motor driver system were constructed to be maneuvered by the AC servo-motor. Eventually, all these compositions were used to evaluate the real-time feedback vibration control system of a 2-story model building, and qualitatively measure the extent of vibrational reduction of the target structure within the laboratory validation tests. As a result of the tests, there was a definite vibrational reduction effect within the laboratory validation tests. As a result of the tests, there was a definite vibrational reduction effect within 1st and 2nd resonance frequency as well as the random frequency of the model building structure. Ultimately, this study confirmed the potential of its wireless acceleration sensor system and AMD system as an effective tool that can be applied to the active vibration control of other structures.

The Analysis and Conservation of Patch Network of Endangered Butterfly Parnassius bremeri(Lepidoptera: Papilionidae) in Fragmented Landscapes (조각난 경관에서 멸종위기종 붉은점모시나비의 서식지 패치 네트워크 분석과 보전)

  • Kim, Do-Sung;Park, Seong-Joon;Cho, Young-Ho;Kim, Ki-Dong;Tho, Jae-Wha;Seo, Hyung-Soo;Shin, Young-Kyu;Suh, Min-Hwan;Oh, Gil-Jong
    • Korean journal of applied entomology
    • /
    • v.51 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • Understanding the ecological complexity and habitat of a species are crucially important to conserve an endangered species. This study evaluated the patch network ecology of the endangered species $Parnassius$ $bremeri$. The results indicated that 188 individuals were captured and 220 were recaptured, respectively. The sex ratio of female: male was 42:146; males were four times more abundant than females. The average longevity of an adult was $3.93{\pm}3.93$ days (male, $4.0{\pm}3.9$; female, $2.5{\pm}1.0$ days); the maximum longevity was 14 days for males and 13 days for females, respectively. Therefore, the expected longevity of males was longer than that of females. The average emigration distance for the species was 377 m, and the maximum emigration distance was 1550 m. The analysis of patch connectivity and individual colonization revealed that the ideal distance between patches was about 300 m. Moreover, a >600 m patch distance decreased the colonization rate severely. We also observed higher immigration and emigration between patches that were clustered in close proximity. This leads us to conclude that a higher number of patches at a close distance is best suited for $P.bremeri$. We find these results to be crucial to determine a policy to protect and conserve this endangered species.

Analysis and Prediction for Spatial Distribution of Functional Feeding Groups of Aquatic Insects in the Geum River (금강 수계 수서곤충 섭식기능군의 공간분포 분석 및 예측)

  • Kim, Ki-Dong;Park, Young-Jun;Nam, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.99-118
    • /
    • 2012
  • The aim of this study is to define a correlation between spatial distribution characteristics of FFG(Functional Feeding Groups) of aquatic insects and related environmental factors in the Geum River based on the theory of RCC(River Continuum Concept). For that objective we had used SMRA(Stepwise Multiple Regression Analysis) method to analyze close relationship between the distribution of aquatic insects and the physical and chemical factors that may affect their inhabiting environment in the study area. And then, a probabilistic method named Frequency Ratio Model(FRM) and spatial analysis function of GIS were applied to produce a predictive distribution map of biota community considering their distribution characteristics according to the environmental factors as related variables. As a result of SMRA, the values of decision coefficient for factors of elevation, stream width, flow velocity, conductivity, temperature and percentage of sand showed higher than 0.5. Therefore these 6 environmental factors were considered as major factors that might affect the distribution characteristics of aquatic insects. Finally, we had calculated RMSE(Root Mean Square Error) between the predicted distribution map and prior survey database from other researches to verify the result of this study. The values of RMSE were calculated from 0.1892 to 0.4242 according to each FFG so we could find out a high reliability of this study. The results of this study might be used to develop a new estimation method for aquatic ecosystem with macro invertebrate community and also be used as preliminary data for conservation and restoration of stream habitats.

An Intravenous Injection Simulator using Augmented Reality for Veterinary Education (증강현실 기술을 사용한 수의학 교육용 정맥 주사 훈련 시뮬레이터)

  • Lee, Jun;Seo, Anna;Kim, WonJong;Kim, Jee-In;Lee, SeungYeon;Eom, KiDong
    • Journal of the HCI Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.25-34
    • /
    • 2012
  • A veterinary student learns and experiences veterinary processes though experiments and practices using real animals. However, animal protection laws regulate animal experiments and restrict number of the experiments on laboratory animals, veterinary students would have less chances of the experiments and the practices for their veterinary training with real animals. This paper proposes a simulator for veterinary education based on augmented reality (AR). We selected an intravenous injection procedure for the simulation because the injection procedure is the most frequently used procedure during veterinary training and the most difficult stage for beginning veterinary students. The proposed AR simulator provides with a tangible prop, of which shape looks like a leg of a real dog. It also has a injection simulator, which receives user's input and sends force feedbacks to indicate results of the injection simulation. We developed a WorkBench type AR system with an LED display and cameras for visual information processing. Finally, we evaluated its performance through experiments and user studies to check its acceptance level and usability of the proposed system. We compared the proposed system with a traditional video based education and an AR based system using a head mounded display (HMD). The results that the proposed system showed better performances over these systems.

  • PDF

A Study on Automatic Correction Method of Electronic Compass Deviation Using the Geostationary Satellite Azimuth Information (정지위성 방위각 정보를 활용한 전자 컴퍼스 편차 자동보정기법 연구)

  • Lee, Jae-Won;Lee, Geon-Ho
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.189-194
    • /
    • 2017
  • The Moving Search Radar System (MSRS) monitors sea areas by moving along the coast. Since the radar is initially aligned to the front of the vehicle, it is important to know the changes in the heading azimuth of the vehicle to quickly acquire the target azimuth from the radar after the MSRS has moved. The heading azimuth can be obtained using the gyro compass, the GPS compass or the electronic compass. The electronic compass is suitable for MSRS requiring fast maneuverability due to its small volume, short stabilization time and low price. However, using a geomagnetic sensor may result in an error due to the surrounding magnetic field. Errors can make early automatic tracking of the satellites difficult and can reduce the radar detection accuracy. Therefore, this paper proposes a method to automatically compensate for the error reflecting the correction value on the radar obtained by comparing the reference azimuth calculated by solving the geodesic inverse problem using two coordinates between the radar and the geostationary satellite with the actually-directed azimuth angle of the satellite antenna. The feasibility and convenience of the proposed method were verified by applying it to the MSRS in the field.

Numerical Simulation based on SPH of Bullet Impact for Fuel Cell Group of Rotorcraft (입자법 기반 항공기용 연료셀 그룹 피탄 수치모사)

  • Kim, Hyun Gi;Kim, Sung Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • There is a big risk of bullet impact because military rotorcraft is run in the battle environment. Due to the bullet impact, the rapid increase of the internal pressure can cause the internal explosion or fire of fuel cell. It can be a deadly damage on the survivability of crews. Then, fuel cell of military rotorcraft should be designed taking into account the extreme situation. As the design factor of fuel cell, the internal fluid pressure, structural stress and bullet kinetic energy can be considered. The verification test by real object is the best way to obtain these design data. But, it is a big burden due to huge cost and long-term preparation efforts and the failure of verification test can result in serious delay of a entire development plan. Thus, at the early design stage, the various numerical simulations test is needed to reduce the risk of trial-and-error together with prediction of the design data. In the present study, the bullet impact numerical simulation based on SPH(smoothed particle hydrodynamic) is conducted with the commercial package, LS-DYNA. Then, the resulting equivalent stress, internal pressure and bullet's kinetic energy are evaluated in detail to examine the possibility to obtain the configuration design data of the fuel cell.

Fungal Development, Respiration and Activity of Oxidative Enzymes in Rice Plants Inoculated with Pyricularia oryzae in Both Compatible and Incompatible Combinations (벼 도열병균에 감염된 친화 및 비친화 조합 벼에서의 균생장, 호흡 및 산화효소 활성)

  • Chung Bong-Koo;Chung Hoo-Sup
    • Korean journal of applied entomology
    • /
    • v.21 no.3 s.52
    • /
    • pp.113-122
    • /
    • 1982
  • Appressorial formation of Pyricularia oryzae on leaves showed no marked difference between highly resistant Tongil and susceptible Norm No. 6. Race N-2 of the blast fungus penetrated directly into motor cells of susceptible cultivar Norm No. 6, later extensively spreading hyphae were developed, while in the cultivar Tongil, after penetration, no further hyphal extension resulted. In discoloration of infected tissues, the highly resistant cultivar Tongil not only discolored rapidly, but also the percentage of discolored cells was higher than the susceptible cultivars, Jinheung and Norm No. 6. The respiratory rate, was generally higher in infected tissue than in healthy tissue. No significant difference in the respiration rate of resistant Suwon No. 180 was not found between the infected and healthy leaf tissue, whereas, in susceptible Jinheung, a marked increase in respiratory rate was caused by blast infection. The respiratory rate increased at the appearance of the first visible symptom in all cultivars resistant or susceptible. Higher peroxidase activity was found in infected tissues as compared with healthy tissue. Peroxidase activity increased in resistant and susceptible reactions. Particularly, in resistant reaction, the increase of the activity was more pronounced. In highly resistant reaction, there was no difference in peroxidase activity between healthy and infected tissues. Ascorbic acid oxidase, hydroquinone oxidase and catechol oxidase had the same trend as the peroxidase. In contrast, activity of catalase rather decreased in leaf tissues infected with compatible races of the fungus.

  • PDF

고에너지 이온빔에 의한 이차전자 발생 수율 및 에너지 측정

  • Kim, Gi-Dong;Kim, Jun-Gon;Hong, Wan;Choi, Han-Woo;Kim, Young-Seok;Woo, Hyung-Joo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.190-190
    • /
    • 1999
  • 박막 표면에 대한 경원소 분석법인 탄성 되튐 반도법을 개발하여 수소, 탄소, 질소등 분석에 이용하고 있다. 이때 입사 입자로 Cl 9.6MeV를 이용하였는데, 표적 표면에 탄소막이 흡착되는 현상을 발견하였다. cold trap 및 cold finger를 사용하여 진공도를 개선하므로서, 탄소막 흡착의 한 원인으로 알려져 잇는 chamber 주변의 진공도 변화를 시켜보았다. 하지만 전혀 탄소막이 생기지 않는 10-10torr 이하 진공을 만드는 것은 많은 비용과 장비를 필요로 하는 상당히 힘든 작업이어서, 이차적으로 탄소막이 표적 표면에 달라 붙게 하는 원인으로 추정되는 이차 전자의 발생을 고에너지 이온빔으로 조사하였다. 일반적으로 이차전자의 발생은 이온빔과 표적과의 충돌에 의한 고체 표면으로부터의 전자방출 현상으로 오래전부터 연구되어져 왔다. 여기에는 두가지 다른 구조가 존재하는 것으로 알려져 있다. 그 중 하나는 입사 입자의 전하와 표적 표면사이 작용하는 potential 에너지가 표적 표면의 일함수(재가 function) 보다 클 때에 일어나는 potential emission이다. 즉 표적 궤도에 존재하는 전자와 입사 이온빔 사이의 potential 이 표적의 전자를 들뜨게 만들고, 이 potential의 크기가표적의 표면 장벽 potential 보다 충분히 클 뜸 전자가 방출하는 현상을 말한다. 다른 또 하나의 방출구조로는 입사 이온이 표적 표면의 원자와의 충돌에 의해 직접저인 에너지 전달을 통한 전자 방출을 말하는데, 이를 kienetic emission(이하 KE)이라 한다. 본 연구에서는 Tandem Van de graaff 가속기로 고에너지 이온빔을 만들어 Au에 충돌시키므로서 kinetic emission을 통하여 Au에서 발생한는 이차전자의 방출 수율 및 에너지를 측정하였다.장구조로 전체 성장 양식을 예견할 수 있다. 일반적인 경향은 Ep가 커질수록 fractal 성장형태가 되며, Ed가 적을수록 cluster 밀도가 작아지나, 같은 Ed+Ep에 대해서는 동일한 크기의 팔 넓이(수평 수직 방향 cluster 두께)를 가진다. 따라서 실험으로부터 얻은 cluster의 팔 넓이로부터 Ed+Ep 값을 결정할 수 있고, cluster 밀도와 fractal 차원으로부터 각각 Ed와 Ep값을 분리하여 얻을 수 있다. 또한 다층 성장에 대한 거칠기(roughness) 값으로부터 Es값도 구할 수 있다. 양방향 대칭성을 갖지 않은 fcc(110) 표면과 같은 경우, 형태는 다양하지만 동일한 방법으로 추정이 가능하다. (110) 표면의 경우 nearest neighbor 원자가 한 축으로 형성되고 따라서 이 축과 이것과 수직인 축에 대한 상호작용이나 분산 장벽 모두가 비대칭적이다. 따라서 분산 장벽도 x-축, y-축 방향에 따라 분리하여 Edx, E요, Epx, Epy 등과 같이 방향에 따라 다르게 고려해야 한다. 이러한 비대칭적인 분산 장벽을 고려하여 KMC 시뮬레이션을 수행하면 수평축과 수직축의 분산 장벽의 비에 따라 cluster의 두께비가 달라지는 성장을 볼 수 있었고, 한 축 방향으로의 팔 넓이는 fcc(100) 표면의 경우 동일한 Ed+Ep값에 대응하는 팔 넓이와 거의 동일한 결과가 나타나는 것을 볼 수 있다. 따라서 이러한 비대칭적인 모양을 가지는 성장의 경우도 cluster 밀도, cluster 모양, cluster의 양 축 방향 길이 비, 양 축 방향의 평균 팔 넓이로부터 각 축 방향의 분산 장벽을 얻어낼 수 있을 것으로 보인다. 기대할 수 있는 여러 장점들을 보고하고자 한다.성이 우수한 시편일수록 grain의 크기가 큰 것으로 나타났고 결정성이 우수한 시편의 경우에서는 XR

  • PDF