• Title/Summary/Keyword: 기능적 일치성

Search Result 43, Processing Time 0.015 seconds

The Agreements between FEV1 and PEFR in the Patients of Mild Bronchial Asthma (외래 진료가 가능한 경증 천식 환자에서 1초간 노력성 호기량(FEV1)과 최대 호기유속(PEFR)간의 연관성)

  • Chang, Won Chul;Kim, Byung Kook;Kim, Soon Jong;Yoo, Kwang Ha;Lee, Tae-Hun;Lee, Jung Yeon;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.6
    • /
    • pp.638-643
    • /
    • 2005
  • Background : Several studies have shown considerable disagreement when using the $FEV_1$ and PEFR to assess the severity of an airflow obstruction. A differential classification of the severity of asthma would lead to serious differences in the evaluation and management of asthma. The aim of this study was to examine the relationship between the $FEV_1$ and PEFR in asthma patients with mild symptoms. Methods : In this study, the PEFR and $FEV_1$ were obtained from 92 adult asthma patients with mild symptoms attending an outpatient pulmonary clinic. The mean differences and the limits of agreement in the paired measurements of the $FEV_1$ and PEFR were calculated. Results : There was a considerable correlation between the $FEV_1$ and PEFR measurements when expressed as a % of the predicted values (r=0.686, p<0.01). The 95% limit of agreement (mean difference ${\pm}1.96SD$) between the $FEV_1$ % and PEFR % were acceptable(-27.4%~33.8%). In addition, the weighted ${\kappa}$(kappa) coefficient for the agreement between the $FEV_1$ % and PEFR % was 0.74 (95% CI, 0.63-0.81), indicating excellent agreement between the two measurements. Conclusion : The spirometer ($FEV_1$) and the Mini-Wright peak flow meter (PEFR) can be used interchangeably in adult asthma patients with mild symptom.

The Estimation Model of an Origin-Destination Matrix from Traffic Counts Using a Conjugate Gradient Method (Conjugate Gradient 기법을 이용한 관측교통량 기반 기종점 OD행렬 추정 모형 개발)

  • Lee, Heon-Ju;Lee, Seung-Jae
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.1 s.72
    • /
    • pp.43-62
    • /
    • 2004
  • Conventionally the estimation method of the origin-destination Matrix has been developed by implementing the expansion of sampled data obtained from roadside interview and household travel survey. In the survey process, the bigger the sample size is, the higher the level of limitation, due to taking time for an error test for a cost and a time. Estimating the O-D matrix from observed traffic count data has been applied as methods of over-coming this limitation, and a gradient model is known as one of the most popular techniques. However, in case of the gradient model, although it may be capable of minimizing the error between the observed and estimated traffic volumes, a prior O-D matrix structure cannot maintained exactly. That is to say, unwanted changes may be occurred. For this reason, this study adopts a conjugate gradient algorithm to take into account two factors: estimation of the O-D matrix from the conjugate gradient algorithm while reflecting the prior O-D matrix structure maintained. This development of the O-D matrix estimation model is to minimize the error between observed and estimated traffic volumes. This study validates the model using the simple network, and then applies it to a large scale network. There are several findings through the tests. First, as the consequence of consistency, it is apparent that the upper level of this model plays a key role by the internal relationship with lower level. Secondly, as the respect of estimation precision, the estimation error is lied within the tolerance interval. Furthermore, the structure of the estimated O-D matrix has not changed too much, and even still has conserved some attributes.

The Direction and Level of Dominant Eye According to the Tests (검사방법에 따른 우세안의 방향 및 강도의 비교)

  • Shim, Jun-Beom;Joo, Seok-Hee;Shim, Hyun-Suk
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.363-368
    • /
    • 2015
  • Purpose: In this study, dominant eye is monitoring and level of dominant was measured in subjective and objective test. Methods: The average age of 21.08 years old of 129 adult (69 male, 60 female) who was no underlying ocular disease were participated in this study. dominant eye was determined by monocular instrument in subjecttive test and using a thin ring ($3.8cm{\times}3.8cm$) in objective test and level of dominant was measured direction of movement of the thin rim. Results: In the subjective test, there are 100 (77.52%) subjects whose dominant eye was right eye, and 29 (22.48%) subjects whose dominant eye was left eye. In the objective test, 90 (69.77%) subjects had right eye d and 33 (25.58%) subjects had left eye, as dominant eye, and 6 (4.65%) subjects had no dominant eye. Comparison of subjective test and objective test by dominant eye were equal in the 104 (80.62%) subjects, unequal in the 19 (14.73%) and center 6 (4.65%) subjects. The level of dominant eye in objective dominant eye test, there were middle 52 (57.78%) subjects, high 38 (42.22%) subjects in the right eye, and middle 25 (75.76%) subjects, high 8 (24.24%) subjects in the left eye. Conclusions: In this study O - Ring Test hasadvantage of direction and level of dominant eye, and middle or center dominant eye was shown in unequal. From this results, testing of dominant eye should be relationship equal and unequal, also required to be study in dominant eye level in binocular vision.