• Title/Summary/Keyword: 기구학적 특성

Search Result 146, Processing Time 0.026 seconds

볼텍스챔버의 유동 특성에 관한 실험

  • Cho, Seok;Seo, Jeong-Sik;Song, Cheol-Hwa;Cheon, Se-Young;Jeong, Mun-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.590-595
    • /
    • 1998
  • 차세대 원자로(KNGR : Korea Next Generation Reactor)에는 새로운 안전개념으로서 피동형 안전주입탱크(Safety Injection Tank. SIT)의 도입을 고려하고 있는데, 이러한 피동형 유량조절기능은 안전주입탱크내의 유체기구(Fluidic device)인 볼텍스챔버(vortex chamber)에 의해 이루어진다. 볼텍스챔버는 내부에서 발생되는 와류강도에 따라 유동저항의 강도가 달라짐을 이용하여 유량을 피동적으로 조절할 수 있는 유체기구이다. 본 연구에서는 볼텍스챔버의 유동특성을 관찰하기 위하여 소규모 실험장치를 구축하고, 이를 이용하여 실험을 수행하였다. 본 연구는 두 단계로 수행되었다. 제1단계 실험에서는 볼텍스챔버의 기하학적 특성이 안전주입탱크의 안전주입수 방출특성에 미치는 영향에 대한 거시적 관점에서의 연구로서. 볼텍스챔버의 기하학적 변수(유입구 및 방출구의 직경)가 안전주입수의 방출과정에서 발생되는 SIT 내의수위 거동, 안전주입수의 방출유량 특성등에 미치는 영향에 대해 중점적으로 고찰하였다 제2단계 실험에서는 1단계 실험에서 관찰된 안전주입탱크의 여러 가지 방출특성과 볼텍스챔버 내부 유동장의 유동특성과의 관련성을 규명하기 위해 PIV (Particle Image Velocimetry)를 이용하여 볼텍스챔버의 기하학적 변수에 따른 유동장 내부의 국소 유속분포를 측정하였다.

  • PDF

Structural Analysis of Robot Structure Handling Nuclear Fuel Assembly in Liquid Metal Reactor VesselI: Rigid Body Dynamic Analysis (액체금속로 핵연료교환장치의 구조 해석I: 기구동역학해석)

  • 권영주;김재희
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.573-581
    • /
    • 1999
  • 액체 금속로(LMIR) 핵연료교환장치의 기본설계를 위해서는 여러 분야(예를 들면, 기구학, 동역 학, 재료역학 등)의 해석을 동시에 수행해야 한다. 그러나 이와 같은 해석들은 각각 별개로 연속적으로 수행되는 것이 아니라, 상호 유기적인 연관을 갖고 수행되어야 한다. 이와 같은 해석에 적합한 기법이 MDO 기법이다. 본 논문에서는 MDO기법에 의한 핵연료교환장치 구조해석의 한 단계로 핵연료교환장치의 기구 동역 학 해석을 수행하여 핵연료 교환장치 작동에 대한 기구운동학적 특성 및 동역학적 특성을 분석하였다. 분석결과 해석대상 핵연료교환장치는 예상한대로 원활하게 작동됨이 확인되었다. 아울러 이 분석 결과를 토대로 핵연료교환장치의 정적 휨 변형을 구하기 위한 재료역학해석에서 요구되는 정적구조를 결정하였다.

  • PDF

Design of Leg Length for a Legged Walking Robot Based on Theo Jansen Using PSO (PSO를 이용한 테오얀센 기반의 보행로봇 다리설계)

  • Kim, Sun-Wook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.660-666
    • /
    • 2011
  • In this paper, we proposed a Particle Swarm Optimization(PSO) to search the optimal link lengths for legged walking robot. In order to apply the PSO algorithm for the proposed, its walking robot kinematic analysis is needed. A crab robot based on four-bar linkage mechanism and Jansen mechanism is implemented in H/W. For the performance index of PSO, the stride length of the legged walking robot is defined, based on the propose kinematic analysis. Comparative simulation results present to illustrate the viability and effectiveness of the proposed method.

Study on the dynamic characteristics of a ″bite-bar″ designed to measure head vibration (머리진동 측정용 Bite-bar 의 동적 특성에 관한 연구)

  • 최병재;정완섭;홍동표
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1105-1110
    • /
    • 2001
  • 본 논문은 머리진동 측정용 바이트 바의 동적 특성에 관한 연구이다. 머리진동의 관심주파수 영역은 0.5Hz~30Hz 범위의 주파수이며 기구학적 이론들을 이용하여 측정된 선형 가속도로부터 머리의 각각속도를 계산하는 과정을 소계한다. 본 논문에서는 9개의 선형가속도를 이용하여 각각속도를 구하는 방법에 대한 검증뿐 아니라 나아가 센서의 측정점의 Offset 영향을 고려한 이론식을 제시한다.

  • PDF

Biomechanical Analysis of the Human Foot by Using Passive Elastic Characteristics of Joints (관절의 수동탄성특성을 이용한 족부의 생체역학적 해석)

  • 김시열;최현기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.197-204
    • /
    • 2004
  • In this study we presented kinematic and kinetic data of foot joints using approximated equations and partial plantar pressure during gait. The maximum angular displacements of each tarsometatarsal joint were found to range from 4$^{\circ}$to 7$^{\circ}$ and the maximum moments were from 200Nㆍcm to 1500Nㆍcm. It was relatively wide distribution. Foot kinematic data calculated from the approximated equations, which were represented by the correlation between moment and angular displacement, and the data from motion analysis were similar. We found that the movements of foot joint were mainly decided by the passive characteristics of the joint when ground reaction force acts. The method of kinematic and kinetic analysis using approximated equations which is presented in this study is considered useful to describe the movements of foot joints in gait simulations.

Kinematical Characteristics of Vibration Assisted Cutting Device Constructed with Parallel Piezoelectric Stacked Actuators (평행한 적층 압전 액추에이터로 구성된 진동절삭기의 기구학적 특성 고찰)

  • Loh, Byoung-Gook;Kim, Gi-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1185-1191
    • /
    • 2011
  • The kinematic characteristics of cutting device significantly affects cutting performance in 2-dimensional elliptical vibration cutting(EVC) where the cutting tool cuts workpiece, traversing a micro-scale elliptical trajectory in a trochoidal motion. In this study, kinematical characteristics of EVC device constructed with two parallel stacked piezoelectric actuators were analytically modeled and compared with the experimental results. The EVC device was subjected to step and low-frequency(0.1 Hz) sinusoidal inputs to reveal only its kinematical displacement characteristics. Hysteresis in the motion of the device was observed in the thrust direction and distinctive skew of the major axis of the elliptical trajectory of the cutting tool was also noticed. Discrepancy in the voltage-to-displacement characteristics of the piezoelectric actuators was found to largely contribute to the skew of the major axis of the elliptical trajectory of the cutting tool. Analytical kinematical model predicted the cutting direction displacement within 10 % error in magnitude with no phase error, but in estimating the thrust direction displacement, it showed a $27^{\circ}$ of phase-lag compared with the measured displacement with no magnitude error.

Kinematical Analysis and Vibrational Characteristics of Orthogonal 2-dimensional Vibration Assisted Cutting Device (직교형 2차원 진동절삭기의 기구학적 해석 및 진동 특성 고찰)

  • Loh, Byoung-Gook;Kim, Gi-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.903-909
    • /
    • 2012
  • In elliptical vibration cutting(EVC) where the cutting tool traces a micro-scale 2-dimensional elliptical trajectory, the kinematical and vibrational characteristics of the EVC device greatly affect cutting performance. In this study, kinematical and vibrational characteristics of an EVC device constructed with two orthogonally-arranged stacked piezoelectric actuators were investigated both analytically and experimentally. The step voltage was applied to the orthogonal EVC device and the associated displacements of the cutting tool were measured to assess kinematical characteristics of the orthogonal EVC device. To investigate the vibrational characteristic of the orthogonal EVC, sinusoidal voltage was applied to the EVC device and the resulting displacements were measured. It was found from experiments that coupling of displacements in the thrust and cutting directions and the tilt of the major axis of the elliptical trajectory exists. In addition, as the excitation frequency is in vicinity of resonant frequencies the distortion in the shape of the elliptical trajectory becomes greater and change in the rotation direction occurs. To correct the shape distortion of the elliptical trajectory, the shape correcting procedure developed for the parallel EVC device was applied for the orthogonal EVC device and it was shown that the shape correcting method successfully corrects distortion.

An Educational Program of Luminaire Design based on Component Attributes (성분적 속성에 기초한 조명기구디자인 교육프로그램)

  • 박우성
    • Archives of design research
    • /
    • v.14 no.2
    • /
    • pp.57-66
    • /
    • 2001
  • This research was carried with emphasis on the technical contents of lighting design which had various knowledge system in the educational viewpoint. First of all, phisiolosical and physical factors were considered with the process of vision between human and light. Next, components of attributes in the lighting fixture were prescribed to analyze concept of the fixture. Finally, I proposed educational program in the instruction to meet the purpose of this research. As a result, in overall research concerning the basic direction and structure, instruction should have balance to reconcile theory and practice about lighting. Second, in terms of expansion of cognition about lighting, experimental education that is considered with interface is needed to make practical verification through relationship with man-made environment and scientific data.

  • PDF

Maneuvering Target Tracking With 3D Variable Turn Model and Kinematic Constraint (3D 가변 선회 모델 및 기구학적 구속조건을 사용한 기동표적 추적)

  • Kim, Lamsu;Lee, Dongwoo;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.881-888
    • /
    • 2020
  • In this paper, research on estimation of states of a target of interest using Line Of Sight(LOS) angle measurement is performed. Target's position, velocity, and acceleration are chosen to be the states of interests. The LOS measurement is known to be highly non-linear, making target dynamic modeling hard to be implemented into a filter. To solve this issue, the Pseudomeasurement equation was applied to the LOS measurement equation. With the help of this equation, 3D variable turn target dynamic model is applied to the filter model. For better performance, Kinematic Constraint is also implemented into the filter model. As for the filter, Bias Compensation Pseudomeasurement Filter (BCPMF) is used which is known for its robustness to initial conditions. Moreover, Two-Stage Kalman Filter (TSKF) form was also implemented to benefit from the parallel computation. As a result, TBCPMF 3DVT-KC is proposed and simulated to assess performance.