• Title/Summary/Keyword: 기구학적해석

Search Result 203, Processing Time 0.018 seconds

An Efficient Iterative Inverse Kinematic Analysis for General Robot Manipulators Using Near Position (근접 위치를 이용한 일반적인 로봇 매니퓰레이터의 효율적인 반복적 역기구학 해석 문제)

  • 강성철;조소형;김문상;조선휘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1640-1648
    • /
    • 1991
  • 본 연구에서는 이러한 편사 함수 최소화의 방법을 적용함에 있어 보다 안정된 수렴성과 계산 시간을 단축시키기 위하여 근접 위치 방법(near position method)을 개 발하여 적용하였다. 근접 위치 방법이란 이론적 해석법으로 풀기가 불가능한 기구학 을 갖는 6관절 로봇을 반복적 해석법을 사용한다는 것을 전제로 하여, 초기 위치를 목 표 위치에 가능한 근접하게 잡아서 반복 계산을 수행하는 방법으로써 로봇의 기구학적 자세에 따른 수렴의 불안정성을 방지하고, 계산 시간을 단축하는데 그 목적이 있다.

Real-time direct kinematics of a double parallel robot arm (2단 평행기구 로봇 암의 실시간 순방향 기구학 해석)

  • Lee, Min-Ki;Park, Kun-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.144-153
    • /
    • 1997
  • The determination of the direct kinematics of the parallel mechanism is a difficult problem but has to be solved for any practical use. This paper presents the efficient formulation of the direct kinematics for double parallel robot arm. The robot arm consists of two parallel mechanism, which generate positional and orientational motions, respectively. These motions are decoupled by a passive central axis which is composed of four revolute joints and one prismatic joint. For a set of given lengths of linear actuators, the direct kinematics will find the joint displacements of th central axis from geometric constraints in each parallel mechanism. Then the joint displacements will be converted into the position and the orientation of the end effector of the robot arm. The proposed formulation is decoupled and compacted so that it will be implemented as a real-time direct kinematics. With the proposed formulation, we analyze the motion of the double parallel robot and show its characteristics. Specially, we investigate the workspace in terms of positional space as well as orientational space.

Kinematic Analysis of Levering Systems in Compound Bows (컴파운더 보우 지레 시스템의 기구학적 해석)

  • Lee, Yong-Sung;Kim, Hong Seok;Cheong, Seong-Kyun;Choi, Ung-Jae;Kim, Young-Keun;Park, Kyung-Rea;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.55-60
    • /
    • 2013
  • Compound bows use levering systems consisting of cables and cam pulleys to bend limbs that are much stiffer than those of recurve bows, thus storing more energy while requiring less force for the archer to hold the bow at a fully drawn position. Many patents have thus far been proposed to improve the efficiency and performance of compound bows through empirical methods, whereas only a few analytical methods have been proposed. In this light, this paper presents a method for the kinematic analysis of levering systems in compound bows so that a designer can easily predict the effects of changes in the cam profiles and limb materials.

Kinematic Modeling and Analysis of Silicon Wafer Grinding Process (실리콘 웨이퍼 연삭 가공의 기구학적 모델링과 해석)

  • 김상철;이상직;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.42-45
    • /
    • 2002
  • General wheel mark in mono-crystalline silicon wafer finding is able to be expected because it depends on radius ratio and angular velocity ratio of wafer and wheel. The pattern is predominantly determined by the contour of abrasive grits resulting from a relative motion. Although such a wheel mark is made uniform pattern if the process parameters are fixed, sub-surface defect is expected to be distributed non-uniformly because of characteristic of mono-crystalline silicon wafer that has diamond cubic crystal. Consequently it is considered that this phenomenon affects the following process. This paper focused on kinematic analysis of wafer grinding process and simulation program was developed to verify the effect of process variables on wheel mark. And finally, we were able to predict sub-surface defect distribution that considered characteristic of mono-crystalline silicon wafer

  • PDF

Kinematic Analysis of a Binary Robot Manipulator (2진 로봇 매니퓰레이터의 기구학적 해석)

  • 류길하
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.162-168
    • /
    • 1998
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot's trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. This paper develops algorithms for kinematics and workspace analysis of a binary manipulator.

  • PDF

Development of 6 DOF Positioning Manipulator Using Closed Loop Structure and Its Kinematic Analysis (폐루프 구조를 가지는 6 자유도 머니퓰레이터의 개발 및 기구학적 해석)

  • 김경찬;우춘규;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.60-68
    • /
    • 1998
  • Parallel link manipulators have an ability of more precise positioning than serial open-loop manipulators. However. general parallel link manipulators have been restricted to the real applications since they have limited workspace due to interference among actuators. In this study, we suggest a closed-loop manipulator with 6 degrees-of-freedom and with enlarged workspace. It consists of two parts for minimizing the interference among actuators. One part is lower structure with planar 3 degrees-of-freedom and the other is upper one with spatial 3 degrees-of-freedom. Forward kinematics and inverse kinematics are solved, research about singularity points are carried out and workspace is evaluated. The comparison of workspace between Stewart platform, which is the typical parallel link manipulator, and the suggested manipulator shows that the workspace of the latter is wider than that of the former. Especially, simulation results also show that the suggested manipulator is more suitable when there needs rotation in the end-effector.

  • PDF

Kinematic Optimal Design of Excavator with Performance Analysis (굴삭기의 기구학적 최적설계와 성능해석)

  • 한동영;김희국;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.617-622
    • /
    • 1994
  • In this paper, we perform a two-stage, kinematic optimal design for 3 degree-of-freedom excavator system which consists of boom, arm, and bucket. The objective of the first stage is to find the optimal joint parameters which maximize the force-torque transmission ratio between the hydraulic actuator and the rotating joint. The objective of the first stage is to find the optimal link parameters which maximize the isotropic characteristic throughout the workspace. It is illustrated that performances of the optimized excavator are improved compared to those of HE280 excavator, with respect to the described performace index and maximum load handling capacity.

  • PDF

Kinematic Analysis of a Double-Action Link-Type Die Set for the Enclosed Die Forging (폐쇄단조용 복동링크식 다이세트의 기구학적 해석)

  • Park Rae-Hun;Jun Byoung-Yoon;Lee Min-Cheol;Joun Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1293-1297
    • /
    • 2006
  • In this paper, kinematic analysis of a double-action link-type die set for enclosed die forging is carried out. The structure of the die set and its operational principle during enclosed die forging are introduced in detail. A closed-form solution of the relative velocity of the middle plate with respect to the upper plate after the upper and lower dies are enclosed is given in terms of the link lengths and the distance from the lower pin to the upper pin of the link system. The effect of the link lengths on both strokes and velocities is investigated. It has been shown that the relative velocity of the middle plate with respect to the upper plate varies almost linearly with the stroke of the upper plate.

A Study on Numerical Analysis of Wheel-rail Contact Points (차륜과 레일 접촉위치의 수치해석에 관한 연구)

  • Kang, Ju-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.236-242
    • /
    • 2009
  • This paper presents a numerical analysis method to determine flange contact at variable wheel positions. The shapes of the wheel and rail surface functions with surface parameters. The Newton-Rhapson method for wheel-rail contact can provide fast solutions, but may not yield true values at optimization process with the condition that minimum distance is zero can time-consuming. A compound method, combining the Newton-Rhapson methods the optimization process method is proposed to provide exact solutions efficiently.

Analysis and Design of 3-DOF Parallel Mechanism Based on Kinematic Couplings (기구학적 커플링으로 구성된 3자유도 병렬 메커니즘 해석 및 설계)

  • Wang, Wei-Jun;Han, Chang-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.479-486
    • /
    • 2012
  • This paper presents a high-speed automatic micro-alignment system that is a part of an inspection machine for small-sized molded lenses of mobile phones, palm-top computers, and so on. This work was motivated by the shortcomings of existing highest-grade commercial machine. A simple tip/tilt/Z parallel mechanism is designed based on kinematic couplings, which is a 3-degree-of-freedom (3-DOF) moderate-cost alignment stage. It is used to automatically adjust the posture of each lens on the tray, which is impossible by the conventional instrument. Amplified piezoelectric actuators are used to ensure the accuracy and dynamic response. Forward kinematic analysis and simulation show that the parasitic motion is small enough compared to the actuator stroke. From the workspace analysis of the moving platform, it is clear that the output motion range satisfies the design requirements.