• Title/Summary/Keyword: 기계

Search Result 58,619, Processing Time 0.075 seconds

Comparison of Seasonal Concentration of Ammonia and Hydrogen Sulfide in Swine House according to Pig's Growth Stage (돼지 생육 단계에 따른 계절별 암모니아와 황화수소의 돈사 내 농도 비교)

  • Kim, Ki Youn;Ko, Han Jong;Kim, Hyeon Tae
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.163-168
    • /
    • 2012
  • The objective of this study is to quantify the levels of ammonia and hydrogen sulfide inmechanically ventilated slurry-pit swine house according to pig's growth stage and seasonal condition. Mean concentrations of ammonia and hydrogen sulfide in the housing room of gestation/farrowing pigs were 5.60 (${\pm}2.48$) ppm and 178.4 (${\pm}204.8$) ppb in spring, 2.51 (${\pm}3.08$) ppm and 86.6 (${\pm}112.5$) ppb in summer, 4.96 (${\pm}2.84$) ppm and 182.3 (${\pm}242.6$) ppb in autumn, and 6.82 (${\pm}3.42$) ppm and 206.3 (${\pm}356.8$) ppb in winter, respectively. Mean concentrations of ammonia and hydrogen sulfide in the housing room of nursery pigs were 7.18 (${\pm}3.26$) ppm and 486.0 (${\pm}190.2$) ppb in spring, 4.23 (${\pm}2.95$) ppm and 206.4 (${\pm}186.9$) ppb in summer, 7.02 (${\pm}2.65$) ppm and 465.4 (${\pm}156.8$) ppb in autumn, and 9.25 (${\pm}3.68$) ppm and 618.4 (${\pm}298.3$) ppb in winter, respectively. Mean concentrations of ammonia and hydrogen sulfide in the housing room of growing/fattening pigs were 9.26 (${\pm}3.02$) ppm and 604.4 (${\pm}186.8$) ppb in spring, 6.78 (${\pm}3.88$) ppm and 312.5 (${\pm}215.4$) ppb in summer, 9.34 (${\pm}2.14$) ppm and 578.2 (${\pm}248.1$) ppb in autumn, and 14.65 (${\pm}3.15$) ppm and 825.3 (${\pm}316.9$) ppb in winter, respectively. As a result, mean concentrations of ammonia and hydrogen sulfide in terms of pig's growth stage were highest in growing/fattening housing room followed by nursery housing room and gestation/farrowing housing room (p<0.05). The swine house showed the highest levels of ammonia and hydrogen sulfide in winter followed by spring, autumn and summer. However, there was no significant difference of ammonia and hydrogen sulfide among seasons (p>0.05).

Variation of Indoor Air Temperature by using Hot Water Piping in Greenhouse (온수배관에 의한 온실 내부의 온도변화)

  • Yoon, Yong-Cheol;Shin, Yik-Soo;Bae, Seoung-Beom;Kim, Hyeon-Tae;Choi, Jin-Sik;Suh, Won-Myung
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.179-190
    • /
    • 2012
  • This study was performed to obtain a heat saving effect and enhance the efficiency of a greenhouse by using a hot water piping in order to minimize the operating costs of a greenhouse as oil prices continue to rise. This method also reduces the likelihood of accidents caused by snowdrifts in regions with heavy snowfall. In general, the experimental plot was $2.0{\sim}6.0^{\circ}C$ higher than the control plot. When the skylight felt was opened, the minimum temperature was in the range of $3.0{\sim}12.0^{\circ}C$. Therefore, we judged that damage caused by snowdrifts may be prevented partly by active heating. The temperature difference inside of the greenhouse by height was insignificant. The maximum heating load of the greenhouse according to crop was respectively about $37,000kcal{\cdot}h^{-1}$ and $41,700kcal{\cdot}h^{-1}$. During the experiment, the heat value of each designed temperature in the range of the minimum ambient temperature $-11.9{\sim}4.0^{\circ}C$ was about 95,000~322,000 kcal and it was in the range of $6,050{\sim}20,900kcal{\cdot}h^{-1}$. If it is compared with the maximum heating load, it can be shown that about 15~56% of the heating energy can be supplied. The total heat value and the amount of power consumption were 2,629,025 kcal and 677.3 kWh respectively during the experiment. If it is heated with diesel, a fossil fuel, the consumption during the experiment was 291 L and the cost was 331,700won. Total cost of using electric power was about 24,400 won and it is shown that it is about 7.5% of the cost of diesel consumption. Also, if the total amount of power consumption is converted into energy, it is approximately 582,200 kcal and the energy was just about 22% of the total heat value.

Characteristics of the Strains Selected from Crosses between Introduced Interspecific Hybrids and Cultivars in Hibiscus Species (종간교잡 유래 도입 무궁화와 국내 선발 품종과의 교잡에 의해 육성된 계통들의 특성)

  • Kang, Ho-Chul;Ha, Yoo-Mi;Kim, Dong-Yeob;Han, In Song;Noh, Kwang-Mo
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.1
    • /
    • pp.55-63
    • /
    • 2011
  • This study was carried out to develop new cultivars of Hibiscus species from crosses between introduced interspecific hybrids and cultivars in Hibiscus species. Fruit setting of interspecific crosses of Hibiscus strains was less than 10% and the number of seeds in the fruit was also in low level. Three individuals of specific flower and leaf characteristics were selected from crosses between introduced interspecific hybrid, 'Fujimusme'(♀), and H. syriacus 'Namwon'(♂) in 2004. A new strain, Hibiscus ${\times}$ 'W-26', was selected from the crossing of interspecific hybrid, 'Fujimusme'(♀), and H. syriacus 'Namwon'(♂), which had white flower and narrow separated petal. Hibiscus ${\times}$ 'WRB-2' was selected from the crossing of interspecific hybrid, 'Fujimusme'(♀), and H. syriacus 'Namwon'(♂), which had white flower and blue eye spot. Hibiscus ${\times}$ 'R-141' was selected from crosses between introduced interspecific hybrid, 'Shichisai'(♀) and H. syriacus 'Namwon'(♂), which had large flowers over 13 cm diameter and revealed tall tree type. Hibiscus ${\times}$ 'R-142' was selected from the crossing of interspecific hybrid, 'Shichisai'(♀), and H. syriacus 'Namwon'(♂), which had large flowers over 13 cm diameter and revealed tall tree type. The characteristics were succeded after grafting. Flower of 'R-142' had reddish violet color with red eye spot, whereas its parent had blue and purple flowers.

Improvement of Energy Density in Supercapacitor by Ion Doping Control for Energy Storage System (에너지 저장장치용 슈퍼커패시터 이온 도핑 제어를 통한 에너지 밀도 향상 연구)

  • Park, Byung-jun;Yoo, SeonMi;Yang, SeongEun;Han, SangChul;No, TaeMoo;Lee, Young Hee;Han, YoungHee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.209-213
    • /
    • 2019
  • Recently, demand for high energy density and long cycling stability of energy storage system has increased for application using with frequency regulation (F/R) in power grid. Supercapacitor have long lifetime and high charge and discharge rate, it is very adaptable to apply a frequency regulation in power grid. Supercapacitor can complement batteries to reduce the size and installation of batteries. Because their utilization in a system can potentially eliminate the need for short-term frequent replacement as required by batteries, hence, saving the resources invested in the upkeep of the whole system or extension of lifecycle of batteries in the long run of power grid. However, low energy density in supercapacitor is critical weakness to utilization for huge energy storage system of power grid. So, it is still far from being able to replace batteries and struggle in meeting the demand for a high energy density. But, today, LIC (Lithium Ion Capacitor) considered as an attractive structure to improve energy density much more than EDLC (Electric double layer capacitor) because LIC has high voltage range up to 3.8 V. But, many aspects of the electrochemical performance of LIC still need to be examined closely in order to apply for commercial use. In this study, in order to improve the capacitance of LIC related with energy density, we designed new method of pre-doping in anode electrode. The electrode in cathode were fabricated in dry room which has a relative humidity under 0.1% and constant electrode thickness over $100{\mu}m$ was manufactured for stable mechanical strength and anode doping. To minimize of contact resistance, fabricated electrode was conducted hot compression process from room temperature to $65^{\circ}C$. We designed various pre-doping method for LIC structure and analyzing the doping mechanism issues. Finally, we suggest new pre-doping method to improve the capacitance and electrochemical stability for LIC.

Selection of Suitable Varieties for Organic Rice Farming in the Central Plain Area of Korea (중부평야지 벼 유기재배 적정 품종 선정)

  • Lee, Chae-Young;Park, Jae-Seong;Lee, Joung-Kwan;Kim, Eun-Jeong;Lee, Hee-Du;Choi, Ye-Seul;Kim, Ik-Jei;Hong, Seong-Taek;Kim, Chung-Kon;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.176-184
    • /
    • 2019
  • The rice variety Chucheongbyeo is mostly cultivated for organic farming in the central region of Korea. This variety is more delicate than the recently developed varieties in rice yield, quality, and pest resistance, and is therefore, not suitable for organic farming. This study was conducted to select suitable varieties for organic rice farming in the central plain area of Korea. We tested 15 different varieties in the organic paddy field of Cheongju city from 2011 to 2013. As the experimental field had good fertility because it had been organically managed for many years, culm length and number of panicles developed better than the varietal characteristics. Daebo, Chinnong and Hyeonpum had slightly lower ripened grain ratio than Chucheongbyeo. The milled rice yield of Samkwang, Sukwang, Haiami, Cheonghaejinmi and Daebo increased by 9-18% compared to that of Chucheongbyeo. The protein content was under 7% for Cheongnam, Sukwang, Daebo, Samkwang, Hyeonpum, Chinnong, Chilbo, Hopyung, Hwangkeumnuri, Suryeojinmi and Jinsumi and under 6% for Sukwang and Samkwang. The whiteness was over 40 in Sukwang, Daebo, Samkwang and Jinsumi. The palatability grade and head rice ratio were good in Daebo, Sukwang, Samkwang and Jinsumi. Therefore, this study recommended Samkwang, Daebo, and Jinsumi as the optimal varieties for organic rice farming in the central plain area of Korea. These varieties could replace Chucheongbyeo, which is inferior to the recently developed varieties in terms of disease and pest resistance and yielding performance.

Application of Chlorophyll Fluorescence Parameters for the Detection of Water Stress Ranges in Grafted Watermelon Seedlings (수박접목묘의 건조스트레스 범위 탐지를 위한 엽록소형광 지수의 적용)

  • Shin, Yu Kyeong;Kim, Yong Hyeon;Lee, Jun Gu
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.461-470
    • /
    • 2019
  • This study was carried out to quantify the drought stress in grafted watermelon seedlings non-destructively by using chlorophyll fluorescence (CF) imaging technique rather than the visual judgment. Six-day old watermelon seedlings were grown under uniform irrigation for 3 days, and then given drought stress. Afterward, the sensor for the measurement of water content in plug tray cell unit was used to classify the drought-stress level into nine groups from D1 (53.0%, sufficient moisture state) to D9 (15.7%, extremely dry stress), and the 16 CF parameters were measured. In addition, re-irrigation was performed on the drought stressed seedlings(D5 - D9) to determine the growth and photosynthesis recovery level, which was not confirmed by visual judgment. The kinetic curve patterns of CF in three different drought stressed seedling groups were found to be different for the early detection of drought stress. All the 16 CF parameters decreased continuously with exposure to drought stress and drastically decreased from D5 (32.1%) where the visual judgment was possible. The fluorescence decline ratio (Rfd_Lss) started to decrease from the initial drought stress level (D5 - D6), and the Maximum PSII quantum yield (Fv/Fm) was significantly decreased in the later extreme drought stress range (D7 - D9) by re-irrigation recovery test. Thus, Rfd_Lss and Fv/Fm parameters were finally selected as potent indicators of growth and photosynthesis recovery in the initial and later stages of drought stress. Also, to the differences in the numerical values of the individual chlorophyll fluorescence parameters, the drought stress level was intuitively confirmed through the image. These results indicate that Rfd and Fv/Fm can be considered as potential CF parameters for the detection of low and extremely high drought stress, respectively. Furthermore, Fv/Fm can be considered as the best CF parameters for recovery at re-irrigation.

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

Regional Disability Free Life Expectancy and Related Factors in Korea (우리나라 지역별 건강수명과 관련요인)

  • Han, So-Hyun;Lee, Sung-Kook
    • Korea journal of population studies
    • /
    • v.35 no.2
    • /
    • pp.209-232
    • /
    • 2012
  • The purposes of this study is to calculate the gender-based Life Expectancy and Disability Free Life Expectancy of 65-year-olds in accordance with the regions of 16 in Korea based on the years 2005 and 2010 by using the Sullivan method. We used the Census in 2005, 2010, the Korea National Statistical Office(10% sample). We also reviewed examining the changes in LE and DFLE and understanding the relevance between the DFLE of 65-year-olds of the year 2010 and related factors. As a result of this study, it was shown that the LE of the group of all 65-year-old in Korea increased from 18.15 years in 2005 to 19.75 years in 2010 and DFLE increased from 11.41 years in 2005 to 11.64 years in 2010. Regionally, the highest LE for total of 65-year-olds was found to be the entire Jeju area and DFLE was the highest in the city of Seoul. And the highest LE and the highest DFLE for 65-year-old male were found to be in the city of Seoul. Regarding the regional LE of 65-year-old female, both in 2005 and 2010 Jeju area was seen to be the highest. The results of a correlation analysis showed that the DFLE of 65-year-olds in 2010 was found to be increasing with high LE and high population density and in regions with low average temperatures, low number of beds and low age standardized death rates of malignant neoplasms and circulatory disease.

  • PDF

Effect of Biomass and N Production by Cultivation Methods of Leguminous and Gramineae Green Manures on Rice Growth in Central Regions of Korea (중부지역 답리작에서 두과 및 화본과 녹비작물의 재배방법에 따른 biomass, 질소 함량이 벼 수량에 미치는 영향)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Kim, Min-Tae;Oh, In-Seok;Choi, Bong-Su;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.853-858
    • /
    • 2011
  • The cultivation methods are important for determining crop yield of green manure. The effect of cultivation methods of green manure crops (GMC) on biomass and rice yield was investigated. This experiment was conducted at Sinheung series (fine loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquepts from Oct. 2007 to Oct. 2008 at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Korea. Seven GMC (hairy vetch, barley, Chinese milk vetch, rye, crimson clover, oats, rattail fescue) were cultivated and incorporated on paddy soil by broadcasting before rice harvesting (BBRH) and partial tillage seeding (PTS). Among the three leguminous GMC, the biomass and N production were the highest at the hairy vetch of PTS. Among the four gramineae GMC, the biomass and N production tended to be higher in the rye of BBRH and barley of PTS. The C/N ratio (56.5~74.2) of rye was high compared with hairy vetch (14.1). Among the GMC, the incorporation of hairy vetch increased $NH_4$-N contents in rice paddy soil at 14 and 42 days after transplanting. These results showed that hairy vetch had no significant to rice yield compared with conventional fertilization. Therefore, hairy vetch seems to be the most efficient green manure crop as an alternatives to chemical N fertilizer in the central regions of Korea.