• 제목/요약/키워드: 기계학습 모델

검색결과 1,154건 처리시간 0.028초

모델규명법에 기초한 열간 사상압연 선진율 학습모델 (A Learning Model of Forward Slip Ratio Based on Model Identification in Hot Strip Finishing Mill Process)

  • 황이철;김신일
    • 대한기계학회논문집A
    • /
    • 제41권1호
    • /
    • pp.63-68
    • /
    • 2017
  • 이 논문에서는 열간 사상압연 공정에서 스트립 통판성의 안정성과 판 품질 향상을 위하여 새로운 선진율 학습모델 개발에 관한 연구를 수행한다. 먼저 기존의 선진율 해석모델에 대한 고찰을 통해 스트립 장력, 루퍼 각도 그리고 롤 주속이 선진율 학습에 크게 영향을 미치는 주요 압연 인자들임을 보인다. 두 번째로는 선진율 학습의 주요 압연 인자들을 이용하여 새로운 선진율 학습모델을 도출한 후, 보조변수 규명 알고리즘을 이용하여 이산시간계 학습모델을 규명한다. 끝으로 컴퓨터 시뮬레이션을 통해 이 논문에서 제안한 새로운 학습모델이 기존의 학습모델보다 유용함을 보인다.

한-영 관용구 기계번역을 위한 NMT 학습 방법 (NMT Training Method for Korean-English Idiom Machine Translation)

  • 최민주;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.353-356
    • /
    • 2020
  • 관용구는 둘 이상의 단어가 결합하여 특정한 뜻을 생성한 어구로 기계번역 시 종종 오역이 발생한다. 이는 관용구가 지닌 함축적인 의미를 정확하게 번역할 수 없는 기계번역의 한계를 드러낸다. 따라서 신경망 기계 번역(Neural Machine Translation)에서 관용구를 효과적으로 학습하려면 관용구에 특화된 번역 쌍 데이터셋과 학습 방법이 필요하다. 본 논문에서는 한-영 관용구 기계번역에 특화된 데이터셋을 이용하여 신경망 기계번역 모델에 관용구를 효과적으로 학습시키기 위해 특정 토큰을 삽입하여 문장에 포함된 관용구의 위치를 나타내는 방법을 제안한다. 실험 결과, 제안한 방법을 이용하여 학습하였을 때 대부분의 신경망 기계 번역 모델에서 관용구 번역 품질의 향상이 있음을 보였다.

  • PDF

앙상블을 이용한 기계학습 기법의 설계: 뜰개 이동경로 예측을 통한 실험적 검증 (Ensemble Design of Machine Learning Technigues: Experimental Verification by Prediction of Drifter Trajectory)

  • 이찬재;김용혁
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권3호
    • /
    • pp.57-67
    • /
    • 2018
  • 앙상블 기법은 기계학습에서 다수의 알고리즘을 사용하여 더 좋은 성능을 내기 위해 사용하는 방법이다. 본 논문에서는 앙상블 기법에서 많이 사용되는 부스팅과 배깅에 대해 소개를 하고, 서포트벡터 회귀, 방사기저함수 네트워크, 가우시안 프로세스, 다층 퍼셉트론을 이용하여 설계한다. 추가적으로 순환신경망과 MOHID 수치모델을 추가하여 실험을 진행한다. 실험적 검증를 위해 사용하는 뜰개 데이터는 7 개의 지역에서 관측된 683 개의 관측 자료다. 뜰개 관측 자료를 이용하여 6 개의 알고리즘과의 비교를 통해 앙상블 기법의 성능을 검증한다. 검증 방법으로는 평균절대오차를 사용한다. 실험 방법은 배깅, 부스팅, 기계학습을 이용한 앙상블 모델을 이용하여 진행한다. 각 앙상블 모델마다 동일한 가중치를 부여한 방법, 차등한 가중치를 부여한 방법을 이용하여 오류율을 계산한다. 가장 좋은 오류율을 나타낸 방법은 기계학습을 이용한 앙상블 모델로서 6 개의 기계학습의 평균에 비해 61.7%가 개선된 결과를 보였다.

이미지 기반 적대적 사례 생성 기술 연구 동향

  • 오희석
    • 정보보호학회지
    • /
    • 제30권6호
    • /
    • pp.107-115
    • /
    • 2020
  • 다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.

ARIMA 모델을 이용한 데이터 흐름 예측 기법 (Data Flow Prediction Scheme using ARIMA Model)

  • 김동현;김민우;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.141-142
    • /
    • 2018
  • 기존 데이터의 패턴 예측에는 통계를 기반으로 한 수학적 모델이 주로 사용되었으나 새로운 데이터에 대한 피드백이 부족하기 때문에 장기간의 데이터 예측에 한계가 있다. 또한 데이터의 특성이 다양하고 복잡한 경우에는 수학적 모델의 결합 및 계산과정이 어려워진다. 따라서 본 논문에서는 데이터의 학습 및 예측에 기존 정적 모델이 아닌 기계학습 중 시계열 데이터 분석 (Time Series Analysis) 을 기반으로 연구를 진행하였다. 기계학습은 복잡한 특성을 가진 데이터를 학습하여 미래의 데이터 값을 예측하거나 분류하는데 있어서 정확도 및 처리시간 측면에서의 성능을 향상시킬 수 있다.

  • PDF

기계학습 기법을 이용한 한국어 구문분석 (Korean Parsing using Machine Learning Techniques)

  • 이용훈;이종혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.285-288
    • /
    • 2008
  • 최근의 구문분석 연구는 컴퓨터 성능 향상과 사용 가능한 대량의 구문분석 말뭉치 증가, 견고한 기계학습 기법 개발 등에 힘입어 통계적인 모델 연구가 꾸준히 증가하고 있다. 본 논문에서는 기존에 개발된 다양한 기계학습 기법 중 ME(Maximum Entropy) 모델과 SVM(Support vector machine) 모델을 이용한 한국어 구문분석 방법을 제안한다. 국어정보베이스(KIBS) 구문분석 말뭉치를 가지고 실험한 결과 SVM 모델을 이용한 한국어 구문분석기가 기존의 확률 기반 통계적 한국어 구문분석기의 성능보다도 최대 1.84% 높은 87.46%의 의존관계 결정 정확률을 보였다. 추후 언어지식을 반영한 다양한 자질들을 이용할 경우 성능 향상이 기대된다.

  • PDF

특징 추출 기법을 이용한 사용자 행동 인식 모델 (Human Action Recognition Model using Feature Engineering)

  • 김다혜;한예찬;정영섭;김재윤
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.47-48
    • /
    • 2021
  • 사용자 행동 인식(HAR)은 사용자의 행동을 분석하여 사용자의 현재 행동을 추측하는 것이며, 센서 데이터에서 특성을 추출하는 것이 중요하다. 본 연구에서는 다양한 특징 추출 기법을 사용하여 기계학습 모델을 비교한다. 변수마다 특성에 맞는 기법을 사용했으며, 정확도와 Kappa 통계량, F1 score 모두 SVM 모델에서 95.2%, 94.2%, 95.1%로 가장 높았다. 이는 기계학습 모델에서 특징 추출 기법을 사용하여 우수한 정확도를 달성할 수 있음을 보인다.

  • PDF

Flower을 사용한 점진적 연합학습시스템 구성 (Construction of Incremental Federated Learning System using Flower)

  • 강윤희;강명주
    • Journal of Platform Technology
    • /
    • 제11권4호
    • /
    • pp.80-88
    • /
    • 2023
  • 인공지능 분야에서 학습모델을 구성하기 위해서는 학습데이터의 수집이 선행되어야 하며, 학습데이터를 학습모델 구성이 이루어지는 중앙 서버로 전달하여야 한다. 연합 학습은 클라이언트 측면의 데이터 이동없이 협력적은 방법으로 전역 학습 모델을 구성하는 기계학습 방법이다. 연합학습은 개인 정보를 보호하기 위해 활용될 수 있으며, 개별 클라이언트에서 로컬 학습모델을 구성한 후 로컬 모델의 매개변수를 중앙에서 집계하여 전역 모델을 업데이트한다. 이 본문에서는 연합학습의 개선을 위해 기존의 학습 결과인 학습 매개변수를 사용한다. 이를 위해 연합학습 프레임워크인 Flower를 사용하여 실험을 수행한 후 알고리즘의 수행시간 및 최적화에 따른 결과를 평가하여 제시한다.

  • PDF

Study on Fault Detection of a Gas Pressure Regulator Based on Machine Learning Algorithms

  • Seo, Chan-Yang;Suh, Young-Joo;Kim, Dong-Ju
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.19-27
    • /
    • 2020
  • 본 논문에서는 정압기의 이상 상태 진단을 위한 기계학습 방법을 제안한다. 일반적으로 설비의 이상 상태 탐지를 위한 기계학습 모델 구현에는 관련 센서의 설치와 데이터 수집 과정이 동반되나, 정압기는 설비 특성상 안전문제에 매우 민감하여 추가적인 센서 설치가 매우 까다롭다. 이에 본 논문에서는 센서의 추가 설치 없이 정압기 설비에서 자체 수집되는 유량과 유압 데이터만을 가지고 정압기의 이상 상태를 조기에 판단하는 기계학습 모델을 제안한다. 본 논문에서는 정압기의 비정상데이터가 충분하지 않은 관계로, 모델 학습 시 오버 샘플링(Over-Sampling)을 적용하여 모델이 모든 클래스에 균형적으로 학습하도록 하였다. 또한, 그레이디언트 부스팅(Gradient Boosting), 1차원 합성곱 신경망(1D Convolutional Neural Networks), LSTM(Long Short-Term Memory) 등의 기계학습 알고리즘을 적용하여 정압기의 이상 상태를 판단하는 분류모델을 구현하였고, 실험 결과 그레이디언트 부스팅 알고리즘이 정확도 99.975%로 가장 성능이 우수함을 확인하였다.

준 지도학습 알고리즘을 이용한 뇌파 감정 분석을 위한 학습데이터 선택 방법에 관한 연구 (A Study on Training Data Selection Method for EEG Emotion Analysis using Semi-supervised Learning Algorithm)

  • 윤종섭;김진헌
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.816-821
    • /
    • 2018
  • 최근 감정 분석 및 질병 진단을 위한 뇌파 연구 분야에서 인공 신경망을 기반으로 한 기계학습 알고리즘이 분류기로 널리 사용되기 시작했다. 뇌파 데이터 분류를 위해 기계학습 모델을 사용하는 경우 유사한 특성을 가지는 데이터만으로 학습데이터가 구성되면 다른 그룹의 데이터에 적용했을 때 분류 성능이 떨어질 수 있다. 본 논문에서는 이러한 문제점을 개선하기 위해 준 지도학습 알고리즘을 사용해 여러 그룹의 데이터를 선택하여 학습데이터 세트를 구성하는 방법을 제안한다. 이후 제안하는 방법을 사용하여 구성한 학습데이터 세트와 유사한 특성을 가지는 데이터로 구성된 학습데이터 세트로 모델을 학습하여 두 모델의 성능을 비교하였다.