• Title/Summary/Keyword: 기계학습 모델

Search Result 1,154, Processing Time 0.037 seconds

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

E-Discovery Process Model and Alternative Technologies for an Effective Litigation Response of the Company (기업의 효과적인 소송 대응을 위한 전자증거개시 절차 모델과 대체 기술)

  • Lee, Tae-Rim;Shin, Sang-Uk
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.287-297
    • /
    • 2012
  • In order to prepare for the introduction of the E-Discovery system from the United States and to cope with some causable changes of legal systems, we propose a general E-Discovery process and essential tasks of the each phase. The proposed process model is designed by the analysis of well-known projects such as EDRM, The Sedona Conference, which are advanced research for the standardization of E-Discovery task procedures and for the supply of guidelines to hands-on workers. In addition, Machine Learning Algorithms, Open-source libraries for the Information Retrieval and Distributed Processing technologies based on the Hadoop for big data are introduced and its application methods on the E-Discovery work scenario are proposed. All this information will be useful to vendors or people willing to develop the E-Discovery service solution. Also, it is very helpful to company owners willing to rebuild their business process and it enables people who are about to face a major lawsuit to handle a situation effectively.

Oil Price Forecasting Based on Machine Learning Techniques (기계학습기법에 기반한 국제 유가 예측 모델)

  • Park, Kang-Hee;Hou, Tianya;Shin, Hyun-Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.1
    • /
    • pp.64-73
    • /
    • 2011
  • Oil price prediction is an important issue for the regulators of the government and the related industries. When employing the time series techniques for prediction, however, it becomes difficult and challenging since the behavior of the series of oil prices is dominated by quantitatively unexplained irregular external factors, e.g., supply- or demand-side shocks, political conflicts specific to events in the Middle East, and direct or indirect influences from other global economical indices, etc. Identifying and quantifying the relationship between oil price and those external factors may provide more relevant prediction than attempting to unclose the underlying structure of the series itself. Technically, this implies the prediction is to be based on the vectoral data on the degrees of the relationship rather than the series data. This paper proposes a novel method for time series prediction of using Semi-Supervised Learning that was originally designed only for the vector types of data. First, several time series of oil prices and other economical indices are transformed into the multiple dimensional vectors by the various types of technical indicators and the diverse combination of the indicator-specific hyper-parameters. Then, to avoid the curse of dimensionality and redundancy among the dimensions, the wellknown feature extraction techniques, PCA and NLPCA, are employed. With the extracted features, a timepointspecific similarity matrix of oil prices and other economical indices is built and finally, Semi-Supervised Learning generates one-timepoint-ahead prediction. The series of crude oil prices of West Texas Intermediate (WTI) was used to verify the proposed method, and the experiments showed promising results : 0.86 of the average AUC.

Extraction of Relationships between Scientific Terms based on Composite Kernels (혼합 커널을 활용한 과학기술분야 용어간 관계 추출)

  • Choi, Sung-Pil;Choi, Yun-Soo;Jeong, Chang-Hoo;Myaeng, Sung-Hyon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.988-992
    • /
    • 2009
  • In this paper, we attempted to extract binary relations between terminologies using composite kernels consisting of convolution parse tree kernels and WordNet verb synset vector kernels which explain the semantic relationships between two entities in a sentence. In order to evaluate the performance of our system, we used three domain specific test collections. The experimental results demonstrate the superiority of our system in all the targeted collection. Especially, the increase in the effectiveness on KREC 2008, 8% in F1, shows that the core contexts around the entities play an important role in boosting the entire performance of relation extraction.

Automatic Software Requirement Pattern Extraction Method Using Machine Learning of Requirement Scenario (요구사항 시나리오 기계 학습을 이용한 자동 소프트웨어 요구사항 패턴 추출 기법)

  • Ko, Deokyoon;Park, Sooyong;Kim, Suntae;Yoo, Hee-Kyung;Hwang, Mansoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.263-271
    • /
    • 2016
  • Software requirement analysis is necessary for successful software development project. Specially, incomplete requirement is the most influential causes of software project failure. Incomplete requirement can bring late delay and over budget because of the misunderstanding and ambiguous criteria for project validation. Software requirement patterns can help writing more complete requirement. These can be a reference model and standards when author writing or validating software requirement. Furthermore, when a novice writes the software scenario, the requirement patterns can be one of the guideline. In this paper proposes an automatic approach to identifying software scenario patterns from various software scenarios. In this paper, we gathered 83 scenarios from eight industrial systems, and show how to extract 54 scenario patterns and how to find omitted action of the scenario using extracted patterns for the feasibility of the approach.

The Study of Facebook Marketing Application Method: Facebook 'Likes' Feature and Predicting Demographic Information (페이스북 마케팅 활용 방안에 대한 연구: 페이스북 '좋아요' 기능과 인구통계학적 정보 추출)

  • Yu, Seong Jong;Ahn, Seun;Lee, Zoonky
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2016
  • With big data analysis, companies use the customized marketing strategy based on customer's information. However, because of the concerns about privacy issue and identity theft, people start erasing their personal information or changing the privacy settings on social network site. Facebook, the most used social networking site, has the feature called 'Likes' which can be used as a tool to predict user's demographic profiles, such as sex and age range. To make accurate analysis model for the study, 'Likes' data has been processed by using Gaussian RBF and nFactors for dimensionality reduction. With random Forest and 5-fold cross-validation, the result shows that sex has 75% and age has 97.85% accuracy rate. From this study, we expect to provide an useful guideline for companies and marketers who are suffering to collect customers' data.

  • PDF

A Process Perspective Event-log Analysis Method for Airport BHS (Baggage Handling System) (공항 수하물 처리 시스템 이벤트 로그의 프로세스 관점 분석 방안 연구)

  • Park, Shin-nyum;Song, Minseok
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.181-188
    • /
    • 2020
  • As the size of the airport terminal grows in line with the rapid growth of aviation passengers, the advanced baggage handling system that combines various data technologies has become an essential element in order to handle the baggage carried by passengers swiftly and accurately. Therefore, this study introduces the method of analyzing the baggage handling capacity of domestic airports through the latest data analysis methodology from the process point of view to advance the operation of the airport BHS and the main points based on event log data. By presenting an accurate load prediction method, it can lead to advanced BHS operation strategies in the future, such as the preemptive arrangement of resources and optimization of flight-carrousel scheduling. The data used in the analysis utilized the APIs that can be obtained by searching for "Korea Airports Corporation" in the public data portal. As a result of applying the method to the domestic airport BHS simulation model, it was possible to confirm a high level of predictive performance.

A Study on the Current Status and Application Strategies for Intelligent Archival Information Services (지능형 기록정보서비스를 위한 선진 기술 현황 분석 및 적용 방안)

  • Kim, Tae-Young;Gang, Ju-Yeon;Kim, Geon;Oh, Hyo-Jung
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.18 no.4
    • /
    • pp.149-182
    • /
    • 2018
  • In the era of digital transformation, new technologies have begun to be applied in the field of records management, away from the traditional view that emphasized the existing institutional and administrative aspects. Therefore, this study analyzed the service status of archives, libraries, and museums applied with advanced intelligent technology and identified the differences. Then, we proposed how to apply intelligent archival information services based on the analysis results. The reason for including libraries and museums in the research is that they are covered by a single category as an information service provider. To achieve our study aims, we conducted literature and case studies. Based on the results of the case study, we proposed the application strategies of intelligent archival information services. The results of this study are expected to help develop intelligent archival service models that are suitable for the changed electronic records environment.

An Investigation of Teaching Methods of Finding out the Greatest Common Divisor and the Least Common Multiple Focused on Their Meanings (최대공약수와 최소공배수를 구하는 과정에서 의미를 강조한 지도방안 탐색)

  • Pang, JeongSuk;Lee, YuJin
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.22 no.3
    • /
    • pp.283-308
    • /
    • 2018
  • 'Divisor and multiple' is the topic included both in the elementary and in the secondary mathematics curriculum, but there has been lack of research on it. It has been reported that students have a difficulty in understanding the meaning of the greatest common divisor (GCD) and the least common multiple (LCM), while they can find out GCD and LCM. Against the lack of research on how to overcome this difficulty, this study designed teaching methods with a model for visualization to emphasize the meanings of divisor and multiple in finding out GCD and LCM, and implemented the methods in one fourth grade classroom. A questionnaire was developed to explore students' solution methods and interviews with focused students were implemented. In addition, fourth-grade students' thinking was compared and contrasted with fifth-grade students who studied divisor and multiple with the current textbook. The results of this study showed that the teaching methods with a specific model for visualization had a positive impact on students' conceptual understanding of the process to find out GCD and LCM. As such, this study provides instructional implications on how to foster the meanings of finding out GCD and LCM at the elementary school.

  • PDF

Study on Detection Technique for Coastal Debris by using Unmanned Aerial Vehicle Remote Sensing and Object Detection Algorithm based on Deep Learning (무인항공기 영상 및 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착 폐기물 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Na-Kyeong;Jeong, Min-Ji;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Kim, Bo-Ram;Park, Mi-So;Yoon, Hong-Joo;Seo, Won-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1209-1216
    • /
    • 2020
  • In this study, we propose a method for detecting coastal surface wastes using an UAV(Unmanned Aerial Vehicle) remote sensing method and an object detection algorithm based on deep learning. An object detection algorithm based on deep neural networks was proposed to detect coastal debris in aerial images. A deep neural network model was trained with image datasets of three classes: PET, Styrofoam, and plastics. And the detection accuracy of each class was compared with Darknet-53. Through this, it was possible to monitor the wastes landing on the shore by type through unmanned aerial vehicles. In the future, if the method proposed in this study is applied, a complete enumeration of the whole beach will be possible. It is believed that it can contribute to increase the efficiency of the marine environment monitoring field.