• 제목/요약/키워드: 기계학습법

검색결과 173건 처리시간 0.017초

가까운 벌림 빠짐 해결을 위한 딥러닝 기반의 트레이스 내삽 및 외삽 기술에 대한 고찰 (A Review of Deep Learning-based Trace Interpolation and Extrapolation Techniques for Reconstructing Missing Near Offset Data)

  • 박지호;설순지;변중무
    • 지구물리와물리탐사
    • /
    • 제26권4호
    • /
    • pp.185-198
    • /
    • 2023
  • 해양 탄성파 탐사 수행 시 송·수신 케이블의 구조적인 거리차에 의해서 필연적으로 발생하는 가까운 벌림(near offset)의 트레이스(trace)빠짐은 뒤따르는 탄성파 자료처리의 결과 및 영상화에 악영향을 끼치게 된다. 특히 가까운 벌림의 자료의 부재는 정확한 탄성파 영상화를 저해하는 다중반사파의 제거에 주요한 인자로 작용하므로 다중반사파의 영향력이 강해지는 천해 및 연안 탐사의 경우 빠짐을 효과적으로 해결해야 한다. 전통적으로 다양한 라돈 변환(Radon transform) 기반의 내삽 방법들이 가까운 벌림 빠짐의 해결책으로 제시되어왔으나 여러 한계점을 보여, 최근 이를 보완하기 위한 딥러닝(deep learning) 기반의 방법들이 제시되고 있다. 이 논문에서는 기존에 제시된 두 가지의 대표적인 딥러닝 기반의 접근법에 대해 면밀히 분석하여 앞으로 가까운 벌림 내삽 연구가 해결해야 하는 문제점들에 대해 깊이 있게 논의한다. 또한 기존의 딥러닝 기반의 트레이스 내삽 기술을 가까운 벌림 상황에 적용할 때 나타나는 한계점을 현장자료 실험을 통해 명확히 분석하여 향후 가까운 벌림 자료 빠짐의 문제는 내삽이 아닌 외삽으로 접근해야 한다는 것을 보여준다.

웨이블릿 변환과 기계 학습 접근법을 이용한 수위 데이터의 노이즈 제거 비교 분석 (Comparative analysis of wavelet transform and machine learning approaches for noise reduction in water level data)

  • 황유관;임경재;김종건;신민환;박윤식;신용철;지봉준
    • 한국수자원학회논문집
    • /
    • 제57권3호
    • /
    • pp.209-223
    • /
    • 2024
  • 4차 산업혁명 시대에 접어들어 데이터 기반의 의사결정이 보편화되고 있다. 하지만 데이터 품질이 확보되지 않은 채 수행되는 데이터 분석은 왜곡된 결과를 낳을 가능성이 존재한다. 수자원 관리의 기초가 되는 수위 데이터도 마찬가지로 결측, 스파이크, 잡음 등 다양한 품질 문제를 가진다. 본 연구에서는 잡음으로 인해 발생하는 데이터 품질 문제를 해결하고자 하였다. 잡음은 데이터의 트렌드 분석을 어렵게 하고 비정상적인 이상치를 생성할 가능성이 있다. 본 연구는 이러한 문제를 해결하기 위해 Wavelet Transform을 이용한 잡음 제거 접근 방안을 제안한다. Wavelet Transform은 신호처리에 주로 사용되는 방법으로 잡음 제거에 효과적인 것으로 알려져 있으며 수집된 데이터의 정답 데이터(True value) 수집을 요구하지 않으므로 시간과 비용을 줄일 수 있다는 점에서 적용이 용이한 편이다. 본 연구는 Wavelet Transform의 성능 평가를 위해 대표적인 머신러닝 기반 잡음 제거 방법인 Denoising Autoencoder와 성능 비교를 수행하였다. 그 결과 Wavelet Transform 중 Coiflets 함수는, Denoising Autoencoder에 비해 Mean Absolute Error, Mean Absolute Percentage Error, Mean Squared Error 등 모든 측면에서 우수한 성능을 보이는 것으로 나타났다. 이러한 결과는 환경에 맞는 적절한 웨이블릿 함수의 선택을 통한 잡음 문제를 효과적으로 해결할 수 있음을 시사한다. 본 연구는 수위 데이터의 품질을 향상시켜 수자원 관리 결정의 신뢰성에 기여하는 강력한 도구로서 Wavelet Transform의 잠재력을 확인한 의의가 있다.

웹기반 지능형 기술가치평가 시스템에 관한 연구 (A Study on Web-based Technology Valuation System)

  • 성태응;전승표;김상국;박현우
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.23-46
    • /
    • 2017
  • 2000년대 이전부터 북미 유럽의 선진국을 중심으로 특정 기업이나 사업(프로젝트)에 관한 가치를 평가하는 사례는 있어 왔으나, 개별 기술(특허)의 경제적 가치를 산정하는 체계나 방법론은 국내를 중심으로 최근 들어 활성화되어 왔다. 이러한 기술가치평가 분야는 기술이전(거래), 현물출자, 사업타당성 분석, 투자유치, 세무/소송 등의 다양한 용도로 활용되고 있다. 물론 기술보증기금의 KTRS, 발명진흥회의 SMART 3.1과 같이, 평가대상기술에 대한 기술력(등급) 평가 혹은 특허등급평가를 정성적으로 수행하는 온라인 시스템은 존재해 왔으나, 대상기술의 정량적인 가치금액까지 산출해 주는 웹기반 지능형 기술가치평가 시스템은 한국과학기술정보연구원(KISTI)에 의해 유일하게 개발 및 공식 오픈되어 확산 활용되고 있다. 본 고에서는 KISTI에서 개발 운영중인 웹기반 'STAR-Value' 시스템을 중심으로, 탑재된 방법론 및 평가모델의 유형, 이를 지원하는 참조정보 및 데이터베이스(D/B)가 어떻게 연계 활용되는지를 소개한다. 특히 미래에 발생할 경제적 수익을 추정하여 현재가치화하는 소득접근법 기반의 대표 모델인 현금흐름할인(DCF) 모델과 특정 로열티율을 기반으로 로열티수입료의 현재가치를 기술료 대가로 산정하는 로열티절감모델을 포함한 6개 모델, 그리고 관련 지원정보(기술수명, 기업(업종)재무정보, 할인율, 산업기술요소 등)의 데이터 기반 연계 방식에 대해 살펴본다. STAR-Value 시스템은 평가대상기술에 대한 국제특허분류(IPC) 혹은 한국표준산업분류(KSIC) 등의 분류 정보로부터 기술순환주기(TCT) 지수, 유사업종(혹은 유사기업)의 매출액 성장률 및 수익성 데이터, 업종별 가중평균자본비용(WACC) 및 산업기술요소 지수 등 메타데이터값을 자동적으로 불러오고 여기에 조정요인을 반영하여 기술가치의 산출결과가 높은 신뢰성 및 객관성을 가지도록 한다. 나아가 대상기술의 잠재적 시장규모와 해당 사업화주체의 시장점유율에 대한 정보까지 보유 재무데이터 기반으로 참조값을 제시하거나 기존에 완료된 평가사례 축적 기반으로 업종별 유사 기술의 가치범위값을 제시해 준다면, 본 시스템이 보다 지능형으로 지원 모듈을 연계 활용하고 실시간으로 손쉽게 고(高)정확도의 기술가치범위를 제시해 줄 수 있을 것으로 기대된다. 본 고에서는 웹기반 STAR-Value 시스템이 참조데이터 기반으로 지능형 연계를 수행하도록 해주는 모형선택 가이드라인 지원기능, 기술가치범위 추론 지원기능, 유사기업 선정 기반의 시장점유율 산정 지원기능의 내부 로직 구성을 설명한다. 상기 지원기능을 통해 비전문가(또는 초보자) 수준에서 최적의 평가모형 선택, 기술가치 범위 추론, 유사기업 선택 및 시장점유율 산정에 대한 정보지원이 데이터 사이언스 및 기계학습 기반으로 수행될 수 있다. 본 연구는 기술가치평가 분야의 이론적 타당성을 평가실무에서 활용할 수 있는 평가모델 및 지원정보를 실제 탑재한 웹기반 시스템의 소개에 의미가 있으며, 추가적으로 보다 객관적이고 손쉬운 지능형 지원시스템의 활용성을 높임으로써, 앞으로 기술사업화의 제 분야에서 다양하게 활용할 수 있을 것으로 기대된다.