본 논문에서는 적분제어기와 전차수 상태관측기로 구성되는 데드비트제어기의 설계방법을 제안하고, 기어를 포함한 직류전동기로 가동되는 회전계통 플랜트에 적용하였다. 샘플링된 연속 데이터 프로세스의 제어시스템은 샘플링사이에 리플이 없음을 보장하지 않지만, 제안된 데드비트제어시스템의 응답은 MATLAB시뮬레이션을 통한 사례연구의 결과, 상태귀환형 최적제어나 출력귀환형 제어시스템응답 등에 비하여 정정시간이 훨씬 빠름을 나타내었다. 또한 플랜트가 연속시스템이므로 시뮬레이션의 정확도를 기하기 위하여 영차홀드를 제어입력측에 삽입하여 실행하였고, 그 결과 주어진 샘플링주기 후에 오차와 리플이 없는 안정상태에 이르는 것을 보여 주었다.
4차 산업혁명이 주목받고 있다. 특히 스마트 팩토리는 제조 분야에서 그 필요성이 강조되고 있다. 현재 제조 분야에서 CNC(Computerized Numeric Controller: 컴퓨터 수치 제어)에 관한 연구가 활발히 진행 중이다. 국내에서는 CNC 설비에 음향 센서, 진동 센서 등 여러 가지 센서를 부착하여 소음, 진동 등 설비 관련 데이터를 수집하는 방안에 관한 연구가 존재한다. 본 연구는 CNC 머신에서 발생하는 데이터를 중심으로 머신러닝 기법을 활용하여 설비 가동 조건이 공구 마모도에 미치는 영향을 분석한다. CNC 설비에서 발생하는 X축, Y축, Z축의 힘, 이동 속도 등 다양한 데이터를 수집한다. 데이터 탐색 기법을 통해 데이터의 특성 및 분포를 분석하였다. 데이터를 RF(Random Forest), XGB(Extreme Gradient Boost), SVM(Support Vector Machine)을 이용하여 CNC 설비 가동 조건이 공구 마모도에 미치는 영향을 분석하였다. 본 연구의 결과는 CNC 설비 가동에서 최적의 조건을 찾고, 이를 바탕으로 품질 향상 및 기계 손상을 예방하는데 활용될 수 있을 것으로 기대된다.
화면을 모니터링하고 있는 시스템에서 사용자가 시선을 화면에 집중하고 있는가를 판단하고 제어할 수 있는 유한 상태 기계를 설계 및 구현하였다. 유한 상태 기계는 화면을 응시하고 있는 눈동자의 상황에 대한 집합과 화면에 집중하고 있는 상태의 집합을 이를 기반으로 구성되었다. 특히 상태 집합을 3종류-주요 상태, 예비 상태, 잠재 상태로 분류하였다. 이전의 상황과 현재의 상황을 연계하여 현 상태를 판단하는 상황 이력을 이용함으로써 판단의 정확도를 높였다. 이 유한 상태 기계에 대하여, 기존의 눈동자 검출 방법에서 얻은 눈동자 위치 데이터를 이용하여 시뮬레이터를 구현하고 작동과정의 모니터링을 통하여 검증하였다. 실제 눈동자의 이미지를 바탕으로 실험한 결과로 상황 이력을 이용한 판정은 현재의 응시 상태가 1회성 또는 장기적인 상태인가를 판단할 수 있는 장점을 보였다.
이 연구에서는 실린더 압력과 모터링 압력의 차이인 차이 압력(difference pressure)을 이용하여 IMEP를 추정하는 방법을 제안하고, 추정된 IMEP를 $IMEP_{diff}$로 정의하였다. $IMEP_{diff}$는 차이 압력이 연소 시작 시점에서 연소 종료 시점까지만 존재하는 압력이라는 사실에 기반하여 이론적인 IMEP 계산식의 연산 구간을 최적화한 것으로 IMEP와 비교 시 $R^2$ 0.9955의 높은 선형관계를 보였다. 또한 이론적인 IMEP 계산 방법과 비교하여 21 %의 실린더 압력 데이터 및 31 %의 계산량만으로 IMEP 획득이 가능하여 실시간 제어에 용이하다. $IMEP_{diff}$ 추정 및 제어 성능은 엔진 실험을 통하여 검증하였으며, $IMEP_{diff}$ 제어를 통하여 실린더 간 토크 편차 감소를 확인하였다.
스마트 팩토리는 설계, 개발, 제조 및 유통 등 생산과정 전반이 디지털 자동화 솔루션으로 이루어져 있으며, 내부 설비와 기계에 사물인터넷(IoT)을 설치해 공정 데이터를 실시간으로 수집하고 이를 분석해 스스로 제어할 수 있게 하는 지능형 공장이다. 스마트 팩토리의 장비들은 게임과 같이 가상의 캐릭터가 하나의 객체 단위로 구동되는 것이 아니라 수많은 하드웨어가 물리적으로 조합되어 연동한다. 즉, 특정한 공동의 목표를 위해 다수의 장치가 개별적인 행동을 동시다발적으로 수행해야 한다. 공정 데이터를 실시간으로 수집할 수 있는 스마트 팩토리의 장점을 활용하여, 일반적인 기계 학습이 아닌 강화 학습을 사용하면 미리 요구되는 훈련 데이터 없이 행동 제어를 할 수 있다. 하지만, 현실 세계에서는 물리적 마모, 시간적 문제 등으로 인해 수천만 번 이상의 반복 학습이 불가능하다. 따라서, 본 논문에서는 시뮬레이터를 활용해 스마트 팩토리 분야에서 복잡한 환경 중 하나인 이송 설비에 초점을 둔 그리드 분류 시스템을 개발하고 협력적 다중 에이전트 기반의 강화 학습을 설계하여 효율적인 행동 제어가 가능함을 입증한다.
본 논문에서는 저가의 카메라를 활용하여 육안 검사로 해왔던 c-tray와 관련된 불량을 비전 이미지 기술을 활용하여 자동으로 검사하였으며, 4대 검사항목인 트레이내 디바이스 겹침, 트레이 휨, 트레이 적재수량, 트레이내 디바이스 포켓 이탈 등 불량유형을 define 및 검출하는 알고리즘을 개발하였다. 따라서, 개발한 헨들링 시스템으로 인해 c-tray의 스택이나 기타 포장 공정에서의 수량 확인 공정 등에 확대 적용이 가능하였다. 그리고 제어를 활용한 비전 이미지를 처리하고 사용자 gui를 처리하는 제어프로그램과 스캔 속도에 맞춰 최적의 검사 이미지를 확보할 수 있는 기계 작동제어 프로그램을 개발하여 비전 데이터 처리와 이미지 획득이 가능한 기계 시스템을 설계하였다.
이중화 PLC 제어시스템은 높은 유용성과 고장허용을 목표로 사용되고 2채널(1-out-of-Z) 구조로 동기화된 마스터, 스탠바이 시스템으로 PLC의 고장허용 제어를 실현함으로써 기계, 플랜트의 연속운전을 실현하며 데이터 링 크는 마스터와 스탠바이 제어기로 연결되어 있다. 고장허용 제어시스템은 전체 제어시스템에서 최소한의 고장으로 손실을 감소시키고 고장발생시 공정의 연속적인 운전과 시스템의 중단없이 수리 및 점검올 가능하게 하여 생산손실을 최소화하며 전체 시스템에 대하여 신뢰도를 향상시키는것이다.
최근 차량의 안전에 관한 기술은 전자 및 제어분야의 기술이 접목되어 능동 안전 시스템이 개발되고 있다. ABC(Active Body Control), ABS(Antilock Brake System), ACC(Adaptive Cruise Control) 기술이 대표적이라 할 수 있다. 이러한 기술은 전자 제어 장치를 기반으로 하고 있으며, 차량 네트워크로 데이터를 실시간으로 공유한다. 따라서 본 논문에서는 기계식으로 구성되어 수동으로 작동되는 주차 브레이크 장치를 차량용 네트워크인 CAN를 이용하여 자동으로 작동될 수 있도록 제어 알고리즘 구현과 응용 어플리케이션을 구현한다. 또한 구현되는 제어시스템을 통해 기존의 차량내 전자제어시스템과 통합 운영할 수 있는 가능성을 확인한다.
디지털 스토리텔링에 등장하는 3차원 가상 캐릭터에는 외형뿐만 아니라 자세나 동작에서도 캐릭터의 개성이 반영된 고유의 스타일이 부여된다. 그러나 사용자가 웨어러블 동작센서를 사용하여 직접 캐릭터의 신체 동작을 제어하는 경우 캐릭터 고유의 스타일이 무시될 수 있다. 본 연구에서는 가상 캐릭터를 위해 제작된 소량의 애니메이션 데이터만을 이용하는 검색 기반 캐릭터 동작 제어 기술을 사용하여 캐릭터 고유의 스타일을 유지하는 기술을 제시한다. 대량의 학습 데이터를 필요로하는 기계학습법을 피하는 대신 소량의 애니메이션 데이터로부터 사용자의 자세와 유사한 캐릭터 자세를 직접 검색하여 사용하는 기술을 제안한다. 제시된 방법을 검증하기 위해 전문가에 의해 제작된 가상현실 게임용 캐릭터 모델과 애니메이션 데이터를 사용하여 실험하였다. 평범한 사람의 모션캡쳐 데이터를 사용했을 때와의 결과를 비교하여 캐릭터 스타일이 보존됨을 증명하였다. 또한 동작센서의 개수를 달리한 실험을 통해 제시된 방법의 확장성을 증명하였다.
문서 생성 요약은 최근 딥러닝을 이용한 end-to-end 시스템을 통해 유망한 결과들을 보여주고 있어 연구가 활발히 진행되고 있는 자연어 처리 분야 중 하나이다. 하지만 문서 생성 요약 모델을 구성하기 위해서는 대량의 본문과 요약문 쌍의 데이터 셋이 필요한데, 이를 구축하기가 쉽지 않다. 따라서 본 논문에서는 정교한 뉴스 기사 요약 데이터 셋을 기계적으로 구축하는 방법을 제안한다. 또한 딥러닝 기반의 생성 요약은 입력 문서와 다른 정보를 생성하거나, 또는 같은 단어를 반복하여 생성하는 문제점들이 존재한다. 이를 해결하기 위해 요약문을 생성할 때 입력 문서의 내용을 인용하는 복사-메커니즘과, 추론 단계에서 단어 반복을 직접적으로 제어하는 페널티를 사용하면 상대적으로 안정적인 문장이 생성될 수 있다. 그리고 Transformer 모델은 순환 신경망 모델보다 요약문 생성 과정에서 시퀀스 길이가 긴 본문의 정보를 적절히 인코딩하여 줄 수 있는 모델이다. 따라서 본 논문에서는 복사-메커니즘과 추론 단계의 페널티를 이용한 Copy-Transformer 모델을 한국어 문서 생성 요약 데이터에 적용하였다. 네이버 지식iN 질문 요약 데이터 셋과 뉴스 기사 요약 데이터 셋 상에서 실험한 결과, 제안한 모델을 이용한 생성 요약이 비교 모델들 대비 가장 좋은 성능을 보이고 양질의 요약을 생성하는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.