기계번역 사후교정 (Automatic Post Editing, APE)이란 번역 시스템을 통해 생성한 번역문을 교정하는 연구 분야로, 영어-독일어와 같이 학습데이터가 풍부한 언어쌍을 중심으로 연구가 진행되고 있다. 최근 APE 연구는 전이학습 기반 연구가 주로 이루어지는데, 일반적으로 self supervised learning을 통해 생성된 사전학습 언어모델 혹은 번역모델이 주로 활용된다. 기존 연구에서는 번역모델에 전이학습 시킨 APE모델이 뛰어난 성과를 보였으나, 대용량 언어쌍에 대해서만 이루어진 해당 연구를 저 자원 언어쌍에 곧바로 적용하기는 어렵다. 이에 본 연구에서는 언어 혹은 번역모델의 두 가지 전이학습 전략을 대표적인 저 자원 언어쌍인 한국어-영어 APE 연구에 적용하여 심층적인 모델 검증을 진행하였다. 실험결과 저 자원 언어쌍에서도 APE 학습 이전에 번역을 한차례 학습시키는 것이 유의미하게 APE 성능을 향상시킨다는 것을 확인할 수 있었다.
본 논문에서는 최근 급속히 증가하여 사회적 이슈가 되고 있는 SMS 스팸 필터링을 위한 듀얼 SMS 스팸필터링 기법을 제안한다. 지속적으로 증가하고 새롭게 변형되는 SMS 문자 필터링을 위해서는 패턴 및 스팸 단어 사전을 통한 필터링은 많은 수작업을 요구하여 부적합하다. 그리하여 기계 학습을 이용한 자동화 시스템 구축이 요구되고 있으며, 효과적인 기계 학습을 위해서는 자질 선택과 자질의 가중치 책정 방법이 중요하다. 하지만 SMS 문자 특성상 문장들이 짧기 때문에 출현하는 자질의 수가 적어 분류의 어려움을 겪게 된다. 이 같은 문제를 개선하기 위하여 본 논문에서는 슬라이딩 윈도우 기반 N-gram 확장을 통해 자질을 확장하고, 확장된 자질로 그래프를 구축하여 얕은 구조적 특징을 표현한다. 학습 데이터에 출현한 N-gram 자질을 정점(Vertex)으로, 자질의 출현 빈도를 그래프의 간선(Edge)의 가중치로 설정하여 햄(HAM)과 스팸(SPAM) 그래프를 각각 구성한다. 이렇게 구성된 그래프를 바탕으로 노드의 중요도와 간선의 가중치를 활용하여 최종적인 자질의 가중치를 결정한다. 입력 문자가 도착하면 스팸과 햄의 그래프를 각각 이용하여 입력 문자의 2개의 자질 벡터(Vector)를 생성한다. 생성된 자질 벡터를 지지 벡터 기계(Support Vector Machine)를 이용하여 각 SVM 확률 값(Probability Score)을 얻어 스팸 여부를 결정한다. 3가지의 실험환경에서 바이그램 자질과 이진 가중치를 사용한 기본 시스템보다 F1-Score의 약 최대 2.7%, 최소 0.5%까지 향상되었으며, 결과적으로 평균 약 1.35%의 성능 향상을 얻을 수 있었다.
이 연구의 목적은 기업가적 혁신성을 정확하게 예측하는 고도화된 분석 모델을 탐색하는 것이다. 기업가정신 연구 분야에서는 최초로, 데이터 과학적 접근방식에 해당되는 기계학습(Machine learning)을 이용해 기업가적 혁신성(entrepreneurial innovativeness)을 예측하는 모델을 제시한다. 예측모델을 구축하기 위하여 Global Entrepreneurship Monitor(GEM)의 62개국 22,099건 데이터를 이용한다. 27개 설명변수로 이뤄진 데이터 셋을 토대로 전통적 통계방법인 다중회귀분석과, 회귀트리, 랜덤포레스트, XG부스트, 인공신경망 등 기계학습을 이용한 예측모델을 구축하고 각 모델의 성능을 비교한다. 모델의 성능 평가를 위해 RMSE(Root mean square error), MAE(Mean absolute error)와 상관관계(Correlation) 등 지표를 사용한다. 분석 결과 5가지 기계학습 기반 모델은 모두 전통적 방법에 비해 우수한 성능을 보였으며, 예측 성능이 가장 좋은 모델은 XG부스트였다. XG부스트를 통한 기업가적 혁신성 예측에 있어서 기여도가 높은 변수는 창업가의 기회인지 및 시장 확장의 교차항 변수이며, 이는 신시장에서 기회를 획득하고자 하는 유형의 창업기업이 높은 혁신성을 보인다는 점을 확인했다. 이 연구는 고도화된 분석방법인 기계학습을 이용해 새로운 예측모델을 제시, 기업가정신 연구의 시야를 확장했다는 점에서 의의를 지닌다.
수면 장애 중 폐쇄성수면무호흡증은 비교적 흔한 질병 중 하나이다. 환자들은 수면다원검사를 통해 해당 질환의 여부를 알아볼 수 있다. 그러나 수면다원검사를 이용한 폐쇄성수면무호흡증 진단에 관한 한, 늘어나는 환자 수, 비싼 검사 비용, 검사 중 불편함, 수용 인원 제한 등 현실적인 문제점들이 지적됐다. 이에 따라, 수면다원검사를 대체할 목적으로 연구자들은 생체 신호를 활용한 기계학습 기반 폐쇄성수면무호흡증 진단 연구들을 활발히 진행해 왔다. 이 시점에서, 우리는 생체 신호 데이터를 기반으로 기계학습 기법을 적용하는 폐쇄성수면무호흡증 진단 연구를 복기한다. 그 결과, 본 논문은 복기 된 연구들에 대한 최신 분류 체계를 제시하고 그 연구들의 종합적인 비교 분석 결과를 제공한다. 또한, 본 논문은 생체 신호를 활용한 연구들의 다양한 한계점을 밝히고 사용된 기계학습 기법의 활용성에 대한 여러 개선점을 제안한다. 끝으로, 본 논문은 생체 신호를 활용한 기계학습 기법 적용과 관련한 향후 연구 주제를 제시한다.
본 논문은 음절 단위 한국어 품사 태깅 방법의 성능 개선을 위해 기분석사전과 기계학습 방법을 결합하는 방법을 제안한다. 음절 단위 품사 태깅 방법은 형태소분석을 수행하지 않고 품사 태깅만을 수행하는 방법이며, 순차적 레이블링(Sequence Labeling) 문제로 형태소 태깅 문제를 접근한다. 본 논문에서는 순차적 레이블링 기반 음절 단위 품사 태깅 방법의 전처리 단계로 품사 태깅말뭉치와 국어사전으로부터 구축된 복합명사 기분석사전과 약 1천만 어절의 세종 품사 태깅말뭉치로부터 자동 추출된 어절 사전을 적용함으로써 품사 태깅 성능을 개선시킨다. 성능 평가를 위해서 약 74만 어절의 세종 품사 태깅말 뭉치로부터 67만 어절을 학습 데이터로 사용하고 나머지 7만 4천 어절을 평가셋으로 사용하였다. 기계학습 방법만을 사용한 경우에 96.4%의 어절 정확도를 보였으며, 기분석사전을 결합한 경우에는 99.03%의 어절 정확도를 보여서 2.6%의 성능 개선을 달성하였다. 퀴즈 분야의 평가셋으로 실험한 경우에도 기계학습 엔진은 96.14% 성능을 보인 반면, 하이브리드 엔진은 97.24% 성능을 보여서 제안 방법이 다른 분야에도 효과적임을 확인하였다.
인공지능 기술의 가장 큰 근간은 학습 가능한 데이터이다. 최근 정부나 사기업에서 수집·생산하는 데이터의 종류와 양이 기하급수적으로 증가하고 있지만, 실제 기계학습에 활용 가능한 데이터의 확보로는 아직까지 이어지지 않고 있다. 이에 본 연구에서는 기계학습에 실제 활용 가능한 데이터가 갖추어야 할 조건에 대해 논의하고, 실제 사례연구를 통해 데이터 품질을 저하시키는 요인을 파악한다. 이를 위해 공공빅데이터를 활용해 예측 모델을 개발한 대표사례를 선정, 공공데이터포털로부터 실제 문제 해결을 위한 데이터를 수집 후 데이터 품질을 확인하였다. 이를 통해 유효한 데이터 선별 기준을 적용하고 후처리한 결과와의 차이를 보인다. 본 연구의 궁극적인 목적은 인공지능의 핵심인 기계학습 기술 개발에 앞서 가장 근본적으로 선결되어야 할 데이터 품질을 관리하고 유효한 데이터를 축적하기 위한 기반 마련에 있다.
지도 학습 기반의 신경 망을 활용한 공학적 자료의 분석은 화학공학 공정 최적화, 미세 먼지 농도 추정, 열역학적 상평형 예측, 이동 현상 계의 물성 예측 등 다양한 분야에서 활용되고 있다. 신경 망의 지도 학습은 학습 자료를 요구하며, 주어진 학습 자료의 구성에 따라 학습 성능이 영향을 받는다. 빈번히 관찰되는 공학적 자료 중에는 DNA의 길이, 분석 물질의 농도 등과 같이 로그 간격으로 주어지는 자료들이 존재한다. 본 연구에서는 넓은 범위에 분포된 로그 간격의 학습 자료를 기계 학습으로 처리하는 경우, 사용 가능한 손실 함수들의 학습 성능을 정량적으로 평가하였으며, 적합한 학습 자료 구성 방식을 연구하였다. 이를 수행하고자, 100×100의 가상 이미지를 활용하여 기계 학습의 회귀 과업을 구성하였다. 4개의 손실 함수들에 대하여 (i) 오차 행렬, (ii) 최대 상대 오차, (iii) 평균 상대 오차로 정량적 평가하여, mape 혹은 msle가 본 연구에서 다룬 과업에 대해 최적의 손실 함수가 됨을 알아내었다. 또한, 학습 자료의 값이 넓은 범위에 걸쳐 분포하는 경우, 학습 자료의 구성을 로그 간격 등을 고려하여 균등 선별하는 방식이 높은 학습 성능을 보임을 밝혀내었다. 본 연구에서 다룬 회귀 과업은 DNA의 길이 예측, 생체 유래 분자 분석, 콜로이드 용액의 농도 추정 등의 공학적 과업에 적용 가능하며, 본 결과를 활용하여 기계 학습의 성능과 학습 효율의 증대를 기대할 수 있을 것이다.
교차언어 문서 범주화(CLTC)는 다른 언어로 된 학습집단을 이용하여 문헌을 자동 분류할 수 있다. 이 연구는 KTSET으로부터 CLTC에 적합한 실험문헌집단을 추출하고, 기계 번역기를 이용하여 가능한 여러 CLTC 방법의 분류 성능을 비교하였다. 분류기는 SVM 분류기를 이용하였다. 실험 결과, CLTC 중에 다국어 학습방법이 가장 좋은 분류 성능을 보였으며, 학습집단 번역방법, 검증집단 번역방법 순으로 분류 성능이 낮아졌다. 하지만 학습집단 번역방법이 기계번역 측면에서 효율적이며, 일반적인 환경에 쉽게 적용할 수 있고, 비교적 분류 성능이 좋아 CLTC 방법 중에서 가장 높은 이용 가능성을 보였다. 한편 CLTC에서 기계번역을 이용하였을 때 번역과정에서 발생하는 자질축소나 주제적 특성이 없는 자질로의 번역으로 인해 성능 저하를 가져왔다.
하천에서 유해화학물질 유입 사고 발생 시 수환경 피해를 최소화하기 위해 신속한 초기 대응이 필요하다. 따라서, 본 연구에서는 수환경 화학사고 대응 시스템 구축을 위해 하천 실시간 모니터링 지점에서 관측된 유해화학물질의 농도 자료를 이용하여 발생원의 유입 지점과 유입량을 역추적하는 프레임워크를 개발하였다. 본 연구에서 제시하는 프레임워크는 첫 번째로 하천 저장대 모형(Transient Storage Zone Model; TSM)과 HEC-RAS 모형을 이용하여 다양한 유량의 수리 조건에서 화학사고 시나리오를 생성하는 단계, 두번째로 생성된 시나리오의 유입 지점과 유입량에 대한 시간-농도 곡선 (BreakThrough Curve; BTC)을 21개의 곡선특징 (BTC feature)으로 추출하는 단계, 최종적으로 재귀적 특징 선택법(Recursive Feature Elimination; RFE)을 이용하여 의사결정나무 모형, 랜덤포레스트 모형, Xgboost 모형, 선형 서포트 벡터 머신, 커널 서포트 벡터 머신 그리고 Ridge 모형에 대한 모형별 주요 특징을 학습하고 성능을 비교하여 각각 유입 위치와 유입 질량 예측에 대한 최적 모형 및 특징 조합을 제시하는 단계로 구축하였다. 또한, 현장 적용성 제고를 위해 시간-농도 곡선을 2가지 경우 (Whole BTC와 Fractured BTC)로 가정하여 기계학습 모형을 학습시켜 모의결과를 비교하였다. 제시된 프레임워크의 검증을 위해서 낙동강 지류인 감천에 적용하여 모형을 구축하고 시나리오 자료 기반 검증과 Rhodamine WT를 이용한 추적자 실험자료를 이용한 검증을 수행하였다. 기계학습 모형들의 비교 검증 결과, 각 모형은 가중항 기반과 불순도 감소량 기반 특징 중요도 산출 방식에 따라 주요 특징이 상이하게 산출되었으며, 전체 시간-농도 곡선 (WBTC)과 부분 시간-농도 곡선 (FBTC)별 최적 모형도 다르게 산출되었다. 유입 위치 정확도 및 유입 질량 예측에 대한 R2는 대부분의 모형이 90% 이상의 우수한 결과를 나타냈다.
본 논문은 일반 텍스트에 나타나는 경쟁 관계에 있는 고유명사들을 경쟁자로 자동 추출하는 방법에 대한 것으로, 규칙 기반 방법과 기계 학습 기반 방법을 모두 제안하고 비교하였다. 제안한 시스템은 뉴스 기사를 대상으로 하였고, 문장에 경쟁관계를 나타내는 명확한 정보가 있는 경우에만 추출하는 것을 목표로 하였다. 규칙기반 경쟁어 추출 시스템은 2개의 고유명사가 경쟁관계임을 나타내는 단서단어에 기반해서 경쟁어를 추출하는 시스템이며, 경쟁표현 단서단어는 620개가 수집되어 사용됐다. 기계학습 기반 경쟁어 추출시스템은 경쟁어 추출을 경쟁어 후보에 대한 경쟁여부의 바이너리 분류 문제로 접근하였다. 분류 알고리즘은 Support Vector Machines을 사용하였고, 경쟁어 주변 문맥 정보를 대표할 수 있는 언어 독립적 5개 자질에 기반해서 모델을 학습하였다. 성능평가를 위해서 이슈화되고 있는 핫키워드 54개에 대해서 623개의 경쟁어를 뉴스 기사로부터 수집해서 평가셋을 구축하였다. 비교 평가를 위해서 기준시스템으로 연관어에 기반해서 경쟁어를 추출하는 시스템을 구현하였고, Recall/Precision/F1 성능으로 0.119/0.214/0.153을 얻었다. 제안 시스템의 실험 결과로 규칙기반 시스템은 0.793/0.207/0.328 성능을 보였고, 기계 학습기반 시스템은 0.578/0.730/0.645 성능을 보였다. Recall 성능은 규칙기반 시스템이 0.793으로 가장 좋았고, 기준시스템에 비해서 67.4%의 성능 향상이 있었다. Precision과 F1 성능은 기계학습기반 시스템이 0.730과 0.645로 가장 좋았고, 기준시스템에 비해서 각각 61.6%, 49.2%의 성능향상이 있었다. 기준시스템에 비해서 제안한 시스템이 Recall, Precision, F1 성능이 모두 대폭적으로 향상되었으므로 제안한 방법이 효과적임을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.