• Title/Summary/Keyword: 기계적 학습

Search Result 1,718, Processing Time 0.037 seconds

A Study of Machine Learning-Based Scheduling Strategy for Fuzzing (기계학습 기반 스케줄링 전략을 적용한 최신 퍼징 연구)

  • Jeewoo Jung;Taeho Kim;Taekyoung Kwon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.973-980
    • /
    • 2024
  • Fuzzing is an automated testing technique that generates a lot of testcases and monitors for exceptions to test a program. Recently, fuzzing research using machine learning has been actively proposed to solve various problems in the fuzzing process, but a comprehensive evaluation of fuzzing research using machine learning is lacking. In this paper, we analyze recent research that applies machine learning to scheduling techniques for fuzzing, categorizing them into reinforcement learning-based and supervised learning-based fuzzers. We evaluated the coverage performance of the analyzed machine learning-based fuzzers against real-world programs with four different file formats and bug detection performance against the LAVA-M dataset. The results showed that AFL-HIER, which applied seed clustering and seed scheduling with reinforcement learning outperformed in coverage and bug detection. In the case of supervised learning, it showed high coverage on tcpdumps with high code complexity, and its superior bug detection performance when applied to hybrid fuzzing. This research shows that performance of machine learning-based fuzzer is better when both machine learning and additional fuzzing techniques are used to optimize the fuzzing process. Future research is needed on practical and robust machine learning-based fuzzing techniques that can be effectively applied to programs that handle various input formats.

Performance Comparison Analysis of AI Supervised Learning Methods of Tensorflow and Scikit-Learn in the Writing Digit Data (필기숫자 데이터에 대한 텐서플로우와 사이킷런의 인공지능 지도학습 방식의 성능비교 분석)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.701-706
    • /
    • 2019
  • The advent of the AI(: Artificial Intelligence) has applied to many industrial and general applications have havingact on our lives these days. Various types of machine learning methods are supported in this field. The supervised learning method of the machine learning has features and targets as an input in the learning process. There are many supervised learning methods as well and their performance varies depends on the characteristics and states of the big data type as an input data. Therefore, in this paper, in order to compare the performance of the various supervised learning method with a specific big data set, the supervised learning methods supported in the Tensorflow and the Sckit-Learn are simulated and analyzed in the Jupyter Notebook environment with python.

Prediction of pollution loads in Geum River using machine learning (기계학습을 이용한 금강유역 옥천의 오염부하량 예측)

  • Lim, Heesung;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.445-445
    • /
    • 2018
  • 기후변화에 따른 환경오염은 21세기 인류에게 가장 심각한 문제 중의 하나로 대두되고 있다. 환경적인 측면에서 하천오염은 경제적으로 많은 문제를 발생시키고 있다. 이러한 하천오염 문제를 해결하기 위해서는 오염물질의 농도 측적 및 데이터 축적이 필수적이라 할 수 있다. 그러나 일반적으로 오염물질 부하량에 대한 직접적인 측정은 비용 측면에서 쉽지 않은 것이 사실이다. 또한 실시간으로 BOD, COD, TN, TP 등의 자료를 이용하여 예측하는 것에는 자료의 부족성으로 인해 한계가 있다. 본 연구에서는 구글의 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하여 기계학습을 통한 하천오염 예측을 목적으로 하고 있다. 기계학습을 위하여 텐서플로우를 활용하여 RNN, LSTM 인공신경망 모형을 구축하였다. 하천오염의 학습과 예측을 위해 결과치 분석을 위한 자료로는 금강 유역에 위치한 옥천 관측소 충청북도 옥천군 이원면 이원대교에 위치한 $36^{\circ}14'31.0''N$ $127^{\circ}40'02.6''E$의 관측소에서 BOD, COD, DO, 부유물질의 자료를 사용하였다. 모형의 학습을 위해서 입력자료는 수위, 유량, 평균기온, 평균풍속 자료를 2004년 ~ 2017년까지의 14년간의 자료를 사용하였다. 연구를 위해 BOD, COD, DO 부유물질 자료는 물환경정보시스템(http://water.nier.go.kr/)의 자료를 활용하고 수위, 유량등의 자료는 국가수자원관리종합정보시스템 (http://www.wamis.go.kr/)의 자료를 사용하였다. 그러나 수온, 수위, 풍속등의 자료는 일 자료가 있는가 반면 BOD, COD, TN, TP등의 자료는 일 자료가 있지 않아 이를 원활히 활용할 수 있도록 예측을 위한 결과치의 선형보간법을 통해 일 자료를 획득한 후 연구를 하였다. RNN, LSTM의 분석 시 학습속도, 반복시행횟수 sequence length의 길이 등의 값을 조절 하면서 결과치를 분석하였다.

  • PDF

Deep Neural Net Machine Learning and Manufacturing (제조업의 심층신경망 기계학습(딥러닝))

  • CHO, Mann;Lee, Mingook
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.11-29
    • /
    • 2017
  • In recent years, the use of artificial intelligence technology such as deep neural net machine learning(deep learning) is becoming an effective and practical option in industrial manufacturing process. This study focuses on recent deep learning development environments and their applications in the manufacturing field.

Estimating soil moisture using machine learning approach: A Case Study to Yongdam watershed (기계학습 기반의 토양함수 예측 기법 개발 (용담댐 시험유역을 중심으로))

  • Huy, Nguyen Dinh;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.167-167
    • /
    • 2018
  • 토양수분은 토양에 포함된 평균 수분량을 나타내며 수문 순환 관점에서 매우 중요한 수문변량 중 하나이다. 본 연구에서는 대표적인 기계학습 방법인 Support Vector Machine (SVM)을 이용한 토양 함수 예측 기법을 개발하고자 하며, 예측인자로서 원격 탐측 기반의 토양함수자료, 강수량, 온도 등을 활용하고자 한다. SVM은 Kernel 함수를 이용하여 복잡한 비선형 관계를 선형 가정을 통해서 해석하는 기계학습 방법으로서 전역모델(global model)로서 다양한 수문기상분야에 적용이 이루어지고 있다. SVM의 장점은 일정 부분의 오차를 허용함으로서 모형의 일반화 측면에서 기존 인공신경망(artificial neural network, ANN)에 비해 우수한 성능을 나타내며, 특히 예측모형으로서 적용성이 매우 크다. 본 연구에서는 과거 토양 함수 자료와 강수, 온도, 위성 관측 기반 정보 등을 이용하여 모형을 적합시키고 이를 미계측 유역으로 확장하는데 연구의 목적이 있으며, 본 연구를 통해 제안된 모형은 용담댐 시험유역을 대상으로 적용되며 기존 ANN 모형 및 다중회귀분석 결과와 비교를 통해 모형의 적합성을 평가하고자한다.

  • PDF

Classification of hysteretic loop feature for runoff generation through a unsupervised machine learning algorithm (비지도 기계학습을 통한 유출 발생 내 이력 현상 구분)

  • Lee, Eunhyung;Jeon, Hangtak;Kim, Dahong;Friday, Bassey Bassey;Kim, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.360-360
    • /
    • 2022
  • 토양수분과 유출 간 관계를 정량화하는 것은 수문 기작 및 유출 발생 과정의 이해를 위한 중요한 정보를 제공한다. 특히, 유출과정의 특성화는 수문 사상에 따른 불포화대 내 토양수 및 토사 손실 제어와 산사태 및 비점오염원 발생 예측을 위해 필수적이다. 유출과정과 관련된 비선형성과 복잡성을 확인하기 위해 토양수분과 유출 사이의 이력 거동이 조사되었다. 특히, 수문 과정 내 이력 현상 구체화를 위해 정성적인 시각적 분류 및 정량적 평가를 위한 이력 지수들이 개발되었다. 정성적인 시각적 분류는 시간에 따라 시계 및 반시계방향으로 다중 루프 형상을 나누는 방식으로 진행되었고, 정량적 평가의 경우 이력 고리(Hysteretic loop) 내 상승 고리(Rising limb)와 하강 고리(Falling limb)의 차이를 기준으로 한 지수로 이력 현상을 특성화하였다. 이전에 제안된 방법론들은 연구자의 판단이 들어가기 때문에 보편적이지 않고 이력 현상을 개발된 지수에 맞춤에 따라 자료 손실이 나타나는 한계가 존재한다. 자료의 손실 없이 불포화대 내 발생 가능한 대표 이력 현상을 자동으로 추출하기 위해 적합한 비지도 학습기반 기계학습 방법론의 제안이 필요하다. 우리 연구에서는 국내 산지 사면에서 강우 사상 동안 다중 깊이(10, 30, 60cm)로 56개의 토양수분 측정지점에서 확보된 토양수분 시계열 자료와 산지 사면 내 위어를 통해 확보된 유출 시계열 자료를 사용하였다. 먼저, 기존에 분류 방법을 기반으로 계절 및 공간특성에 따라 지배적으로 발생하는 토양수분-유출 간 이력 현상을 특성화하였다. 다음으로, 토양수분-유출 간 이력 패턴을 자료 손실 없이 형상화하여 자동으로 데이터베이스화하는 알고리즘을 개발하였다. 마지막으로, 비지도 학습방법을 이용하여 데이터베이스화된 실제 발현 이력 현상 내 확률분포를 최대한 가깝게 추정하는 은닉층을 반복적인 재구성 학습을 통해 구현함으로써 대표 이력 현상 패턴을 추출하였다.

  • PDF

Multi-task learning for entity-centric fact correction on machine summaries (기계 요약의 개체명 사실 수정을 위한 다중 작업 학습 방법 제안)

  • Shin, JeongWan;Noh, Yunseok;Park, SangHeon;O, YoungSun;Park, Seyoung
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.124-130
    • /
    • 2021
  • 기계요약의 사실 불일치는 생성된 요약이 원문과 다른 사실 정보를 전달하는 현상이며, 특히 개체명이 잘못 사용되었을 때 기계요약의 신뢰성을 크게 훼손한다. 개체명의 수정을 위해서는 두 가지 작업을 수행해야한다. 먼저 요약 내 각 개체명이 올바르게 쓰였는지 판별을 해야하며, 이후 잘못된 개체명을 맞게 고치는 작업이 필요하다. 본 논문에서는 두 가지 작업 모두 각 개체명을 문맥적으로 이해함으로써 해결할 수 있다고 가정하고, 이에 따라 두 작업에 대한 다중 작업 학습 방법을 제안한다. 제안한 방법을 통해 학습한 모델은 생성된 기계요약에 대한 후처리 교정을 수행할 수 있다. 제안 모델을 평가하기 위해 강제적으로 개체명을 훼손시킨 요약데이터와 기계 요약 데이터에 대해서 성능을 평가 하였으며, 다른 개체명 수정 모델과 비교하였다. 제안모델은 개체명 수준에서 92.9%의 교정 정확도를 달성했으며, KoBART 요약모델이 만든 기계요약의 사실 정확도 4.88% 포인트 향상시켰다.

  • PDF

Selecting Initial Training Set for Active Learning by Clustering (군집화 기법을 이용한 능동적 학습의 최초학습예제 선정)

  • 강재호;류광렬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.16-18
    • /
    • 2003
  • 기계학습의 분류(classification) 기술을 실제 문제에 적용하기 위해서는 카테고리(category)를 부여한 학습예제를 상당수 준비하여야 한다. 예제에 카테고리를 부여(labeling)하는 작업에는 무시할 수 없는 시간과 인력을 필요로 한다. 능동적 학습(active learning)은 동일한 수의 학습예제로 최대한의 성능을 달성하기 위하여 카테고리를 부여할 학습예제를 선별하는 전략이다. 능동적 학습은 현재까지 파악된 정보에 기반하여 분류기(classifier)를 생성하고, 생성된 분류기를 활용하여 카테고리를 부여받았을 때 가장 이득이 큰 예제들을 선정하여 사용자에게 문의하는 과정을 반복하여 수행한다. 만일 능동적 학습의 첫 학습단계에서 학습에 보다 유용한 예제들을 최초학습예제집합으로 선정한다면 같은 수의 학습예제로 더 나은 성능을 달성할 수 있을 것이다. 본 논문에서는 유사한 예제들은 동일한 카테고리에 속할 가능성이 높다는 일반적인 가정에 기반하여 예제들을 군집화(clustering)한 후, 생성된 각 군집을 대표할 수 있는 예제로 최초학습예제집합으로 구성하는 방안을 제안한다. 제안한 방안을 문서분류 문제를 대상으로 실험해 본 결과 최초학습예제들을 임의로 선정하는 방식보다 정확도가 높은 분류기를 생성할 수 있음을 확인하였다.

  • PDF

Study on Quantized Learning for Machine Learning Equation in an Embedded System (임베디드 시스템에서의 양자화 기계학습을 위한 양자화 오차보상에 관한 연구)

  • Seok, Jinwuk;Kim, Jeong-Si
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.110-113
    • /
    • 2019
  • 본 논문에서는 임베디드 시스템에서의 양자화 기계학습을 수행할 경우 발생하는 양자화 오차를 효과적으로 보상하기 위한 방법론을 제안한다. 경사 도함수(Gradient)를 사용하는 기계학습이나 비선형 신호처리 알고리즘에서 양자화 오차는 경사 도함수의 조기 소산(Early Vanishing Gradient)을 야기하여 전체적인 알고리즘의 성능 하락을 가져온다. 이를 보상하기 위하여 경사 도함수의 최대 성분에 대하여 직교하는 방향의 보상 탐색 벡터를 유도하여 양자화 오차로 인한 성능 하락을 보상하도록 한다. 또한, 기존의 고정 학습률 대신, 내부 순환(Inner Loop) 없는 비선형 최적화 알고리즘에 기반한 적응형 학습률 결정 알고리즘을 제안한다. 실험결과 제안한 방식의 알고리즘을 비선형 최적화 문제에 적용할 시 양자화 오차로 인한 성능 하락을 최소화시킬 수 있음을 확인하였다.

  • PDF

A Study on Machine Learning Algorithm for Intelligent Information Retrieval in World Wide Web (WWW상의 지능형 정보검색을 위한 기계학습 알고리즘 구현에 관한 연구)

  • 김성희
    • Journal of the Korean Society for information Management
    • /
    • v.17 no.2
    • /
    • pp.189-205
    • /
    • 2000
  • We investigate the appropriate design and implementation of an Inductive Learning Alogrithm with a Neural Network in order to solve both inconsistent indexing and incomplete query problems on the web. Specifically, the proposed system based queries and documents in the field of Mathematics shows how inductive learning method and neural networks can apply to information retreival. Also, this study examines all of parameters of the neural networks -- the number of node in input and output, hidden layer size and learning parameters etc. -- which are significant in determining how well the neural network will converge.

  • PDF