• Title/Summary/Keyword: 기계적 접속 부위

Search Result 5, Processing Time 0.026 seconds

Sensitivity Analysis of Contact Resistance for Thermal Analysis of Spacecraft (위성 열해석을 위한 접촉열저항의 민감도 해석)

  • Han, Cho-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.117-125
    • /
    • 2004
  • Performing the sensitivity analysis of contact conduction on the basis of the thermal model already established, the study of thermal design is accomplished for the preparation of the future changes of mechanical interface design. A relatively simple thermal model is taken into consideration for the convenience of the analysis. A variety of the spacecraft bus voltages and the contact resistances are tried. As a consequence, when the mechanical interface condition is changed at the same module, the successful thermal design could be achieved if we design the heater to have sufficiently large power with reference to the heritage of contact resistance.

A study on thermal and mechanical properties according to the structures of conductor sleeve and the method of connection for EHV Cables (전력 케이블용 접속 슬리브의 구조 및 접속 방법에 따른 특성 연구)

  • Kim, Young-Bum;Han, Bong-Soo;Ryu, Jeong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1493_1494
    • /
    • 2009
  • 초고압 전력 케이블용 도체 접속을 위한 접속방법으로 압축형(compressing type), 용접형(welding type), 압축-용접형(CW type; compressing-welding type)의 슬리브는 물론 동과 알루미늄의 이종(nonidentical materials) 접속을 위한 슬리브를 개발 하였으며, 전기적, 기계적으로 검증된 제품 개발을 위하여, 슬리브의 구조 변경과 접속 방법의 차이뿐 아니라 접속 전후의 응력 평가를 위해 슬리브 시편의 인장시험(tensile strength) 결과에 따른 슬리브 제작 및 시험을 진행하였다. 신뢰성 있는 제품 개발과 데이터를 얻기 위하여 초고압용 지중 고압 케이블을 시험 시료로 적용하여 시험 선로(test loop)를 구성하였으며, 이를 통하여 구조와 재질에 따른 접속 방법, 이상 온도 상승 또는 국부적인 고온 부위 발생 여부 등의 전기 시험 및 열싸이클 전압 시험(heating cycle voltage test) 조건을 설정하여 시험 전후의 열신축 등 전기적, 기계적 특성을 평가하였다. 접속 슬리브의 구조 및 재질에 따른 위치별 발열 양상을 체크하였으며, X-ray 장비를 이용하여 슬리브 내부의 압축 및 충진 정도를 점검함으로써 기존 접속 슬리브 보완은 물론 개발된 접속 슬리브의 설계 기준 및 안전율을 설정 할 수 있었다.

  • PDF

Low Splicing Loss Technique between Standard Single Mode Fiber and High Δ Fiber (표준 단일모드 광섬유와 하이델타 광섬유사이의 저 손실 접속 기법)

  • Kim, Kwang-Taek;Yang, Byoung-Cheoul
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.169-174
    • /
    • 2008
  • In this paper, we have presented techniques to reduce the splicing loss between standard single mode fiber and high ${\Delta}$ single mode fiber based on the mode expanding and mode evolution induced by thermal treatment of the fibers. The experimental results show that mechanical splicing loss can be reduced from 2.3 dB to 0.1 dB through proper thermal treatment of the high ${\Delta}$ fiber. Meanwhile, we achieved $0.2{\sim}0.4dB$ of low splicing loss between two fibers by heating the splicing region using electric arcing or an oxygen flame.

A Consideration on the Causes of 22.9kV Cable Terminal Burning Accident (22.9kV 케이블 단말 부위 소손 사고의 원인에 관한 고찰)

  • Shim, Hun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.7-12
    • /
    • 2022
  • The main cause of cable accidents is the accelerated deterioration of the cable itself or internal and external electrical, mechanical, chemical, thermal, moisture intrusion, etc., which reduces insulation performance and causes insulation breakdown, leading to cable accidents. Insulation deterioration can occur even when there is no change in the appearance of the cable, so there is a difficulty in preventing cable accidents due to insulation deterioration. Since cable accidents can occur in areas with poor insulation due to the effects of overvoltage and overcurrent, it is necessary to comprehensively analyze transformers and circuit breakers, and ground faults caused by phase-to-phase imbalance. Ground fault accidents due to insulation breakdown of cables can occur due to defects in the cable itself and poor cable construction, as well as operational influences, arcs during operation of electrical equipment (switchers, circuit breakers, etc.). analysis is needed. This study intends to examine the causes of cable accidents through analysis of cable accidents that occurred in a manufacturing factory.

A Study on the Thermo-Mechanical Stress of MEMS Device Packages (마이크로 머신(MEMS) 소자 패키지의 열응력에 대한 연구)

  • Jeon, U-Seok;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.744-750
    • /
    • 1998
  • Unlike common device, MEMS(micro-electro-mechanical system) device consists of very small mechanical structures which determine the performance of the device. Because of its small mechanical structure inside. MEMS device is very sensitive to thermal stress caused by CTE(coefficient of thermal expansion) mismatch between its components. Therefore, its characteristics are affected by material properties. process temperature. and dimensions of each layer such as chip, adhesive and substrate. In this study. we investigated the change of the thermal stress in the chip attached to a substrate. With computer-aided finite element method (FEM), the computer simulation of the thermal stress was conducted on variables such as bonding material, process temperature, bonding layer thickness and die size. The commercial simulation program, ABAQUS ver5.6, was used. Subsequently 3-layer test samples were fabricated, and their degree of bending were measured by 3-D coordinate measuring machine. The experimental results were in good agreement with the simulation results. This study shows that the bonding layer could be the source of stress or act as the buffer layer for stress according to its elastic modulus and CTE. Solder adhesive layer was the source of stress due to its high elastic modulus, therefore high compressive stress was developed in the chip. And the maximum tensile stress was developed in the adhesive layer. On the other hand, polymer adhesive layer with low elastic modulus acted as buffer layer, and resulted in lower compressive stress. The maximum tensile stress was developed in the substrate.

  • PDF